1.Genetic counseling for hearing loss today.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):1-7
Genetic counseling for hearing loss today originated from decoding the genetic code of hereditary hearing loss, which serves as an effective strategy for preventing hearing loss and constitutes a crucial component of the diagnostic and therapeutic framework. This paper described the main principles and contents of genetic counseling for hearing loss, the key points of counseling across various genetic models and its application in tertiary prevention strategies targeting hearing impairment. The prospects of an AI-assisted genetic counseling decision system and the envisions of genetic counseling in preventing hereditary hearing loss were introduced. Genetic counseling for hearing loss today embodies the hallmark of a new era, which is inseparable from the advancements in science and technology, and will undoubtedly contribute to precise gene intervention!
Humans
;
Genetic Counseling
;
Deafness/genetics*
;
Hearing Loss/diagnosis*
;
Hearing Loss, Sensorineural/genetics*
2.Distribution characteristics and correlation analysis of GJB2 variation in patients with auditory neuropathy.
Yiming LI ; Hongyang WANG ; Danyang LI ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):23-29
Objective:To elucidate the correlation between the GJB2 gene and auditory neuropathy, aiming to provide valuable insights for genetic counseling of affected individuals and their families. Methods:The general information, audiological data(including pure tone audiometry, distorted otoacoustic emission, auditory brainstem response, electrocochlography), imaging data and genetic test data of 117 auditory neuropathy patients, and the patients with GJB2 gene mutation were screened out for the correlation analysis of auditory neuropathy. Results:Total of 16 patients were found to have GJB2 gene mutations, all of which were pathogenic or likely pathogenic.was Among them, one patient had compound heterozygous variants GJB2[c. 427C>T][c. 358_360del], exhibiting total deafness. One was GJB2[c. 299_300delAT][c. 35_36insG]compound heterozygous variants, the audiological findings were severe hearing loss.The remaining 14 patients with GJB2 gene variants exhibited typical auditory neuropathy. Conclusion:In this study, the relationship between GJB2 gene and auditory neuropathy was preliminarily analyzed,and explained the possible pathogenic mechanism of GJB2 gene variants that may be related to auditory neuropathy.
Humans
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Hearing Loss, Central/genetics*
;
Deafness/genetics*
;
Mutation
3.Splicing mutations of GSDME cause late-onset non-syndromic hearing loss.
Danyang LI ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):30-37
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Child
;
Hearing Loss, Sensorineural/diagnosis*
;
Deafness/genetics*
;
Mutation
;
Hearing Loss/genetics*
;
Pedigree
4.Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):38-43
Objective:To analyze the phenotype and genotype characteristics of autosomal recessive hearing loss caused by MYO15A gene variants, and to provide genetic diagnosis and genetic counseling for patients and their families. Methods:Identification of MYO15A gene variants by next generation sequencing in two sporadic cases of hearing loss at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The sequence variants were verified by Sanger sequencing.The pathogenicity of these variants was determined according to the American College of Medical Genetics and Genomics(ACMG) variant classification guidelines, in conjuction with clinical data. Results:The probands of the two families have bilateral,severe or complete hearing loss.Four variants of MYO15A were identified, including one pathogenic variant that has been reported, two likely pathogenic variants,and one splicing variant of uncertain significance. Patient I carries c. 3524dupA(p. Ser1176Valfs*14), a reported pathogenic variant, and a splicing variant c. 10082+3G>A of uncertain significance according to the ACMG guidelines. Patient I was treated with bilateral hearing aids with satisfactory effect, demonstrated average hearing thresholds of 37.5 dB in the right ear and 33.75 dB in the left ear. Patient Ⅱ carries c. 7441_7442del(p. Leu2481Glufs*86) and c. 10250_10252del(p. Ser3417del),a pair of as likely pathogenic variants according to the ACMG guidelines. Patient Ⅱ, who underwent right cochlear implantation eight years ago, achieved scores of 9 on the Categorical Auditory Performance-Ⅱ(CAP-Ⅱ) and 5 on the Speech Intelligibility Rating(SIR). Conclusion:This study's discovery of the rare c. 7441_7442del variant and the splicing variant c. 10082+3G>A in the MYO15A gene is closely associated with autosomal recessive hearing loss, expanding the MYO15A variant spectrum. Additionally, the pathogenicity assessment of the splicing variant facilitates classification of splicing variations.
Humans
;
Pedigree
;
China
;
Deafness/genetics*
;
Hearing Loss/genetics*
;
Phenotype
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Myosins/genetics*
5.Long-term auditory monitoring in children with Alport syndrome based on different degrees of renal injury.
Lining GUO ; Wei LIU ; Min CHEN ; Jiatong XU ; Ning MA ; Xiao ZHANG ; Qingchuan DUAN ; Shanshan LIU ; Xiaoxu WANG ; Junsong ZHEN ; Xin NI ; Jie ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):44-49
Objective:To investigate long-term auditory changes and characteristics of Alport syndrome(AS) patients with different degrees of renal injury. Methods:Retrospectively analyzing clinical data of patients diagnosed AS from January 2007 to September 2022, including renal pathology, genetic detection and hearing examination. A long-term follow-up focusing on hearing and renal function was conducted. Results:This study included 70 AS patients, of which 33(25 males, 8 females, aged 3.4-27.8 years) were followed up, resulting in a loss rate of 52.9%.The follow-up period ranged from 1.1to 15.8 years, with 16 patients followed-up for over 10 years. During the follow-up, 10 patients presenting with hearing abnormalities at the time of diagnosis of AS had progressive hearing loss, and 3 patients with new hearing abnormalities were followed up, which appeared at 5-6 years of disease course. All of which were sensorineural deafness. While only 3 patients with hearing abnormalities among 13 patients received hearing aid intervention. Of these patients,7 developed end-stage renal disease(ESRD), predominantly males (6/7). The rate of long-term hearing loss was significantly different between ESRD group and non-ESRD group(P=0.013). There was no correlation between the progression of renal disease and long-term hearing level(P>0.05). kidney biopsies from 28 patients revealed varying degrees of podocyte lesion and uneven thickness of basement membrane. The severity of podocyte lesion was correlated with the rate of long-term hearing loss(P=0.048), and there was no correlation with the severity of hearing loss(P>0.05). Among 11 cases, theCOL4A5mutationwas most common (8 out of 11), but there was no significant correlation between the mutation type and hearing phenotype(P>0.05). Conclusion:AS patients exhibit progressive hearing loss with significant heterogeneity over the long-term.. THearing loss is more likely to occur 5-6 years into the disease course. Hearing abnormalities are closely related to renal disease status, kidney tissue pathology, and gene mutations, emphasizing the need for vigilant long-term hearing follow-up and early intervention.
Male
;
Child
;
Female
;
Humans
;
Nephritis, Hereditary/pathology*
;
Retrospective Studies
;
Kidney
;
Deafness
;
Hearing Loss/genetics*
;
Kidney Failure, Chronic/pathology*
;
Mutation
6.Research progress on hereditary endocrine and metabolic diseases associated with sensorineural hearing loss.
Fang CHEN ; Qinying ZHANG ; Qiujing ZHANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):63-69
Hereditary endocrine and metabolic diseases , caused by genetic factors, exhibit complex and diverse symptoms, including the possibility of concurrent sensorineural deafness. Currently, there is a limited clinical understanding of hereditary endocrine and metabolic diseases that manifest with deafness, the pathogenesis remains unclear,and there is a lack of effective diagnostic and treatment methods. This article summarizes the research progress of hereditary endocrine and metabolic diseases complicated with deafness from the pathogenesis, clinical phenotype, diagnosis and treatment. Understanding the current research progress and integrating genetic analysis into clinical practice are crucial for accurate diagnosis and treatment, evaluating clinical efficacy, and providing effective genetic counseling for these diseases.
Humans
;
Deafness/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Phenotype
;
Metabolic Diseases/genetics*
;
Genetic Counseling
7.Progress of research on the role of Atoh1 gene in the regeneration of mammalian auditory hair cells.
Rongjie CUI ; Shiyu ZHOU ; Yunlong LI
Chinese Journal of Medical Genetics 2023;40(5):614-617
Atoh1 gene encodes a helix-loop-helix transcription factor which is involved in the generation and differentiation of mammalian auditory hair cells and supporting cells, and regulation of the proliferation of cochlear cells, therefore plays an important role in the pathogenesis and recovery of sensorineural deafness. This study reviews the progress of the Atoh1 gene in hair cell regeneration, with the aim of providing a reference for the study of hair cell regeneration gene therapy for sensorineural deafness.
Animals
;
Humans
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Hair Cells, Auditory/physiology*
;
Transcription Factors
;
Hearing Loss, Sensorineural
;
Cell Differentiation
;
Deafness
;
Regeneration/genetics*
;
Mammals
8.A prospective study of genetic screening of 2 060 neonates by high-throughput sequencing.
Danyan ZHUANG ; Fei WANG ; Shuxia DING ; Zhoushu ZHENG ; Qi YU ; Lanqiu LYU ; Shuni SUN ; Rulai YANG ; Wenwen QUE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(6):641-647
OBJECTIVE:
To assess the value of genetic screening by high-throughput sequencing (HTS) for the early diagnosis of neonatal diseases.
METHODS:
A total of 2 060 neonates born at Ningbo Women and Children's Hospital from March to September 2021 were selected as the study subjects. All neonates had undergone conventional tandem mass spectrometry metabolite analysis and fluorescent immunoassay analysis. HTS was carried out to detect the definite pathogenic variant sites with high-frequency of 135 disease-related genes. Candidate variants were verified by Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 2 060 newborns, 31 were diagnosed with genetic diseases, 557 were found to be carriers, and 1 472 were negative. Among the 31 neonates, 5 had G6PD, 19 had hereditary non-syndromic deafness due to variants of GJB2, GJB3 and MT-RNR1 genes, 2 had PAH gene variants, 1 had GAA gene variants, 1 had SMN1 gene variants, 2 had MTTL1 gene variants, and 1 had GH1 gene variants. Clinically, 1 child had Spinal muscular atrophy (SMA), 1 had Glycogen storage disease II, 2 had congenital deafness, and 5 had G6PD deficiency. One mother was diagnosed with SMA. No patient was detected by conventional tandem mass spectrometry. Conventional fluorescence immunoassay had revealed 5 cases of G6PD deficiency (all positive by genetic screening) and 2 cases of hypothyroidism (identified as carriers). The most common variants identified in this region have involved DUOX2 (3.93%), ATP7B (2.48%), SLC26A4 (2.38%), GJB2 (2.33%), PAH (2.09%) and SLC22A5 genes (2.09%).
CONCLUSION
Neonatal genetic screening has a wide range of detection and high detection rate, which can significantly improve the efficacy of newborn screening when combined with conventional screening and facilitate secondary prevention for the affected children, diagnosis of family members and genetic counseling for the carriers.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Prospective Studies
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Glucosephosphate Dehydrogenase Deficiency
;
Mutation
;
Sulfate Transporters/genetics*
;
DNA Mutational Analysis
;
Genetic Testing/methods*
;
Deafness/genetics*
;
Neonatal Screening/methods*
;
Hearing Loss, Sensorineural/genetics*
;
High-Throughput Nucleotide Sequencing
;
Solute Carrier Family 22 Member 5/genetics*
9.Analysis of clinical phenotype and genetic variants among four Chinese pedigrees affected with Waardenburg syndrome.
Lulu WANG ; Lu MAO ; Hongen XU ; Shuping SUN ; Bin ZUO ; Wei LU
Chinese Journal of Medical Genetics 2023;40(6):661-667
OBJECTIVE:
To explore the genetic basis for four Chinese pedigrees affected with Waardenburg syndrome (WS).
METHODS:
Four WS probands and their pedigree members who had presented at the First Affiliated Hospital of Zhengzhou University between July 2021 and March 2022 were selected as the study subjects. Proband 1, a 2-year-and-11-month female, had blurred speech for over 2 years. Proband 2, a 10-year-old female, had bilateral hearing loss for 8 years. Proband 3, a 28-year-old male, had right side hearing loss for over 10 years. Proband 4, a 2-year-old male, had left side hearing loss for one year. Clinical data of the four probands and their pedigree members were collected, and auxiliary examinations were carried out. Genomic DNA was extracted from peripheral blood samples and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing.
RESULTS:
Proband 1, with profound bilateral sensorineural hearing loss, blue iris and dystopia canthorum, was found to have harbored a heterozygous c.667C>T (p.Arg223Ter) nonsense variant of the PAX3 gene, which was inherited from her father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type I. Proband 2, with moderate sensorineural hearing loss on the right side and severe sensorineural hearing loss on the left side, has harbored a heterozygous frameshifting c.1018_1022del (p.Val340SerfsTer60) variant of the SOX10 gene. Neither of her parents has harbored the same variant. Based on the ACMG guidelines, it was classified as pathogenic (PVS1+PM2_Supporting+PP4+PM6), and the proband was diagnosed with WS type II. Proband 3, with profound sensorineural hearing loss on the right side, has harbored a heterozygous c.23delC (p.Ser8TrpfsTer5) frameshifting variant of the SOX10 gene. Based on the ACMG guidelines, it was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type II. Proband 4, with profound sensorineural hearing loss on the left side, has harbored a heterozygous c.7G>T (p.Glu3Ter) nonsense variant of the MITF gene which was inherited from his mother. Based on the ACMG guidelines, the variant was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type II.
CONCLUSION
By genetic testing, the four probands were all diagnosed with WS. Above finding has facilitated molecular diagnosis and genetic counseling for their pedigrees.
Female
;
Humans
;
Male
;
Deafness
;
East Asian People
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Pedigree
;
Phenotype
;
Waardenburg Syndrome/diagnosis*
10.Results of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
Hongqin HE ; Li SU ; Jia XU ; Yiwen WANG ; Yarong WANG ; Cui GUO ; Dandan LINGHU
Chinese Journal of Medical Genetics 2023;40(7):815-820
OBJECTIVE:
To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
METHODS:
Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test.
RESULTS:
Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05).
CONCLUSION
Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.
Infant, Newborn
;
Humans
;
Connexins/genetics*
;
Retrospective Studies
;
Deafness/genetics*
;
Connexin 26/genetics*
;
Neonatal Screening/methods*
;
Mutation
;
Genetic Testing/methods*
;
China/epidemiology*
;
Hearing
;
DNA Mutational Analysis

Result Analysis
Print
Save
E-mail