1.NINJ1 impairs the anti-inflammatory function of hUC-MSCs with synergistic IFN-γ and TNF-α stimulation.
Wang HU ; Guomei YANG ; Luoquan AO ; Peixin SHEN ; Mengwei YAO ; Yuchuan YUAN ; Jiaoyue LONG ; Zhan LI ; Xiang XU
Chinese Journal of Traumatology 2025;28(4):276-287
PURPOSE:
To investigate the regulatory role of nerve injury-induced protein 1 (NINJ1) in the anti-inflammatory function of human umbilical cord mesenchymal stem cells (hUC-MSCs) co-stimulated by interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α).
METHODS:
hUC-MSCs were expanded in vitro using standard protocols, with stem cell characteristics confirmed by flow cytometry and multilineage differentiation assays. The immunomodulatory properties and cellular activity of cytokine-co-pretreated hUC-MSCs were systematically evaluated via quantitative reverse transcription RT-qPCR, lymphocyte proliferation suppression assays, and Cell Counting Kit-8 viability tests. Transcriptome sequencing, Western blotting and small interfering RNA interference were integrated to analyze the regulatory mechanisms of NINJ1 expression. Functional roles of NINJ1 in pretreated hUC-MSCs were elucidated through gene silencing combined with lactate dehydrogenase release assays, Annexin V/Propidium Iodide apoptosis analysis, macrophage co-culture models, and cytokine Enzyme-Linked Immunosorbent Assay. Therapeutic efficacy was validated in a cecal ligation and puncture-induced septic mouse model: 80 mice were randomly allocated into 4 experimental groups (n=20/group): sham group (laparotomy without cecal ligation); phosphate-buffered saline-treated group (cecal ligation and puncture (CLP) + 0.1 mL phosphate-buffered saline); hUC-MSCs (small interfering RNA (siRNA)-interferon-gamma and tumor necrosis factor-alpha co-stimulation (IT))-treated group (CLP + hUC-MSCs transfected with scrambled siRNA); and hUC-MSCs (siNINJ1-IT)-treated group (CLP + hUC-MSCs with NINJ1-targeting siRNA).
RESULTS:
hUC-MSCs demonstrated compliance with International Society for Cellular Therapy criteria, confirming their stem cell identity. IFN-γ/TNF-α co-pretreatment enhanced the immunosuppressive capacity of hUC-MSCs, accompanied by the reduction of cellular viability, while concurrently upregulating pro-inflammatory cytokines such as interleukin-6 and interleukin-1β. This co-stimulation significantly elevated NINJ1 expression in hUC-MSCs, whereas genetic silencing of NINJ1 effectively suppressed pro-inflammatory cytokine production and attenuated damage-associated molecular patterns release through inhibition of programmed plasma membrane rupture. Furthermore, the NINJ1 interference potentiated the ability of cytokine-pretreated hUC-MSCs to suppress LPS-induced pro-inflammatory responses in RAW264.7 macrophages. In cecal ligation and puncture-induced sepsis model, NINJ1-silenced hUC-MSCs exhibited enhanced therapeutic efficacy, manifested by reduced systemic inflammation and multi-organ damage.
CONCLUSION
Our findings shed new light on the immunomodulatory functions of cytokine-primed MSCs, offering groundbreaking insights for developing MSC-based therapies against inflammatory diseases via interfering the expression of NINJ1.
Mesenchymal Stem Cells/drug effects*
;
Animals
;
Interferon-gamma/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Humans
;
Mice
;
Umbilical Cord/cytology*
;
Cells, Cultured
;
Apoptosis
;
Male
2.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
3.Reversing metabolic reprogramming by CPT1 inhibition with etomoxir promotes cardiomyocyte proliferation and heart regeneration via DUSP1 ADP-ribosylation-mediated p38 MAPK phosphorylation.
Luxun TANG ; Yu SHI ; Qiao LIAO ; Feng WANG ; Hao WU ; Hongmei REN ; Xuemei WANG ; Wenbin FU ; Jialing SHOU ; Wei Eric WANG ; Pedro A JOSE ; Yongjian YANG ; Chunyu ZENG
Acta Pharmaceutica Sinica B 2025;15(1):256-277
The neonatal mammalian heart has a remarkable regenerative capacity, while the adult heart has difficulty to regenerate. A metabolic reprogramming from glycolysis to fatty acid oxidation occurs along with the loss of cardiomyocyte proliferative capacity shortly after birth. In this study, we sought to determine if and how metabolic reprogramming regulates cardiomyocyte proliferation. Reversing metabolic reprogramming by carnitine palmitoyltransferase 1 (CPT1) inhibition, using cardiac-specific Cpt1a and Cpt1b knockout mice promoted cardiomyocyte proliferation and improved cardiac function post-myocardial infarction. The inhibition of CPT1 is of pharmacological significance because those protective effects were replicated by etomoxir, a CPT1 inhibitor. CPT1 inhibition, by decreasing poly(ADP-ribose) polymerase 1 expression, reduced ADP-ribosylation of dual-specificity phosphatase 1 in cardiomyocytes, leading to decreased p38 MAPK phosphorylation, and stimulation of cardiomyocyte proliferation. Our present study indicates that reversing metabolic reprogramming is an effective strategy to stimulate adult cardiomyocyte proliferation. CPT1 is a potential therapeutic target for promoting heart regeneration and myocardial infarction treatment.
5.Novel hormone therapies for advanced prostate cancer: Understanding and countering drug resistance.
Zhipeng WANG ; Jie WANG ; Dengxiong LI ; Ruicheng WU ; Jianlin HUANG ; Luxia YE ; Zhouting TUO ; Qingxin YU ; Fanglin SHAO ; Dilinaer WUSIMAN ; William C CHO ; Siang Boon KOH ; Wei XIONG ; Dechao FENG
Journal of Pharmaceutical Analysis 2025;15(9):101232-101232
Prostate cancer is the most prevalent malignant tumor among men, ranking first in incidence and second in mortality globally. Novel hormone therapies (NHT) targeting the androgen receptor (AR) pathway have become the standard of care for metastatic prostate cancer. This review offers a comprehensive overview of NHT, including abiraterone, enzalutamide, apalutamide, darolutamide, and rezvilutamide, which have demonstrated efficacy in delaying disease progression and improving patient survival and quality of life. Nevertheless, resistance to NHT remains a critical challenge. The mechanisms underlying resistance are complex, involving AR gene amplification, mutations, splice variants, increased intratumoral androgens, and AR-independent pathways such as the glucocorticoid receptor, neuroendocrine differentiation, DNA repair defects, autophagy, immune evasion, and activation of alternative signaling pathways. This review discusses these resistance mechanisms and examines strategies to counteract them, including sequential treatment with novel AR-targeted drugs, chemotherapy, poly ADP-ribose polymerase inhibitors, radionuclide therapy, bipolar androgen therapy, and approaches targeting specific resistance pathways. Future research should prioritize elucidating the molecular basis of NHT resistance, optimizing existing therapeutic strategies, and developing more effective combination regimens. Additionally, advanced sequencing technologies and resistance research models should be leveraged to identify novel therapeutic targets and improve drug delivery efficiencies. These advancements hold the potential to overcome NHT resistance and significantly enhance the management and prognosis of patients with advanced prostate cancer.
6.Associations between Red Cell Indices and Cerebral Blood Flow Velocity in High Altitude.
Hao Lun SUN ; Tai Ming ZHANG ; Dong Yu FAN ; Hao Xiang WANG ; Lu Ran XU ; Qing DU ; Jun LIANG ; Li ZHU ; Xu WANG ; Li LEI ; Xiao Shu LI ; Wang Sheng JIN
Biomedical and Environmental Sciences 2025;38(10):1314-1319
7.Differential analysis of biogas production in simulated experiments of aquitard layers in coal seam fire zones.
Daping XIA ; Yunxia NIU ; Jijun TIAN ; Haichao WANG ; Donglei JIA ; Dan HUANG ; Zhenzhi WANG ; Weizhong ZHAO
Chinese Journal of Biotechnology 2025;41(8):3064-3080
To explore the differences in biological gas production in the waterlogged zone of a coal seam fire-affected area, in this study the in-situ gas production experiment was conducted with the mine water from aquitard layers in coal seam fire zones in Xinjiang. The results showed that the biogas production first increased and then decreased with the increase in distance, and the highest gas production reached 216.55 mL. The changes in key metabolic pathways during the anaerobic fermentation of coal were analyzed, which showed that as the distance from the aquitard layer in the coal seam fire zone increased, the methanogenesis pathways gradually shifted from acetic acid decarboxylation and carbon dioxide reduction to acetic acid decarboxylation and methylamine methanogenesis. The significant variability in the in-situ mine water reservoir conditions contributed to the differences. In addition, the reservoir pressure and temperature increased as the distance from the fire zone became longer, and the salinity of the farthest mine water in the reverse fault was the highest due to the lack of groundwater supply. Pearson correlation analysis revealed significant correlations of microbial communities with key functional genes and the types and concentrations of ions. The ions significantly influencing microbial enzymatic metabolic activities included Al3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Mg2+, PO43-, and Mo6+. The differences in metabolic pathways were attributed to the integrated effects of a co-occurring environment with multiple ions. The gas production simulation experiments and metagenomic analyses provide data support for the practical application of in-situ biogas experiments, laying a foundation for engineering applications.
Biofuels
;
Coal
;
Methane/biosynthesis*
;
Fires
;
Groundwater
;
Coal Mining
;
Fermentation
;
China
;
Anaerobiosis
8.Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice.
Yang ZHU ; Hao HUANG ; Zhi CHEN ; Yong TAO ; Ling-Yi LIAO ; Shi-Hao GAO ; Yan-Jiang WANG ; Chang-Yue GAO
Neuroscience Bulletin 2024;40(2):182-200
Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
Humans
;
Mice
;
Animals
;
Transcranial Magnetic Stimulation
;
Alzheimer Disease/therapy*
;
Cognitive Dysfunction/therapy*
;
Cognition
;
Sulfur
;
Iron
;
Iron-Sulfur Proteins
;
Mitochondrial Proteins

Result Analysis
Print
Save
E-mail