1.Progress in the regulation of mammalian embryonic development and reproduction by bone morphogenetic proteins.
Hongyu JIA ; Honghong HE ; Peng WANG ; Xiaoxiao HUANG ; Wenyi CAI ; Yaying WANG ; Jian LI ; Daoliang LAN ; Huizhu ZHANG
Chinese Journal of Biotechnology 2025;41(7):2534-2544
Bone morphogenetic proteins (BMPs) are multifunctional growth factors of the transforming growth factor β (TGF-β) superfamily. They regulate steroid secretion from mammalian granulosa cells, promote granulosa cell survival and proliferation, and inhibit follicular atresia, luteinization, and granulosa cell apoptosis, thereby promoting the development and maturation of mammalian follicles. At the same time, BMPs play an important role in embryonic morphogenesis, induction of uterine receptivity, and blastocyst attachment. This paper describes the effects of BMPs on mammalian follicular and embryonic development and the roles of BMPs in female reproduction, focusing on the process in which BMPs promote follicular maturation by regulating steroid secretion from granulosa cells during mammalian oocyte maturation. This review aims to provide a reference for further research on mammalian oocyte culture and improvement of reproductive efficiency in female animals.
Animals
;
Embryonic Development/drug effects*
;
Female
;
Bone Morphogenetic Proteins/pharmacology*
;
Reproduction/physiology*
;
Humans
;
Granulosa Cells/cytology*
;
Oocytes
2.Research progress in biological activities and oocyte aging-regulating effect of EGCG.
Weiying ZHANG ; Huizhu ZHANG ; Yujun LI ; Daoliang LAN ; Xianrong XIONG ; Yaying WANG ; Jian LI ; Honghong HE
Chinese Journal of Biotechnology 2024;40(12):4382-4395
Epigallocatechin gallate (EGCG), the predominant polyphenol in green tea, exerts a spectrum of physiological activities, including antioxidant, anticancer, and anti-inflammatory effects. Emerging research underscores the significance of EGCG in modulating oocyte aging. EGCG can enhance antioxidant defenses, improve mitochondrial functions, and inhibit apoptotic pathways, thereby retarding the aging of oocytes. This review delineates the main molecular features of EGCG and expounds its regulatory mechanisms concerning oocyte aging, enriching the knowledge on the role of EGCG in the amelioration of oocyte aging.
Catechin/pharmacology*
;
Oocytes/metabolism*
;
Humans
;
Animals
;
Antioxidants/pharmacology*
;
Female
;
Cellular Senescence/drug effects*
;
Tea/chemistry*
;
Apoptosis/drug effects*

Result Analysis
Print
Save
E-mail