1.Comparison of Wild and Cultivated Gardeniae Fructus Based on Traditional Quality Evaluation
Yuanjun SHANG ; Bo GENG ; Xin CHEN ; Qi WANG ; Guohua ZHENG ; Chun LI ; Zhilai ZHAN ; Junjie HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):225-234
ObjectiveBased on traditional quality evaluation of Gardeniae Fructus(GF) recorded in historical materia medica, this study systematically compared the quality differences between wild and cultivated GF from morphological characteristics, microscopic features, and contents of primary and secondary metabolites. MethodsVernier calipers and analytical balances were used to measure the length, diameter and individual fruit weight of wild and cultivated GF, and the aspect ratio was calculated. A colorimeter was used to determine the chromaticity value of wild and cultivated GF, and the paraffin sections of them were prepared by safranin-fast green staining and examined under an optical microscope to observe their microstructure. Subsequently, the contents of water-soluble and alcohol-soluble extracts of wild and cultivated GF were detected by hot immersion method under the general rule 2201 in volume Ⅳ of the 2020 edition of the Pharmacopoeia of the People's Republic of China, the starch content was measured by anthrone colorimetric method, the content of total polysaccharides was determined by phenol-sulfuric acid colorimetric method, the sucrose content was determined by high performance liquid chromatography coupled with evaporative light scattering detection(HPLC-ELSD), and the contents of representative components in them were measured by ultra-performance liquid chromatography(UPLC). Finally, correlation analysis was conducted between quality traits and phenotypic traits, combined with multivariate statistical analysis methods such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), key differential components between wild and cultivated GF were screened. ResultsIn terms of traits, the wild GF fruits were smaller, exhibiting reddish yellow or brownish red hues with significant variation between batches. While the cultivated GF fruits are larger, displaying deeper orange-red or brownish red. The diameter and individual fruit weight of cultivated GF were significantly greater than those of wild GF, while the blue-yellow value(b*) of wild GF was significantly higher than that of cultivated GF. In the microstructure, the mesocarp of wild GF contained numerous scattered calcium oxalate cluster crystals, while the endocarp contained stone cell class round, polygonal or tangential prolongation, undeveloped seeds were visible within the fruit. In contrast, the mesocarp of cultivated GF contained few calcium oxalate cluster crystals, or some batches exhibited extremely numerous cluster crystals. The stone cells in the endocarp were predominantly round-like, with the innermost layer arranged in a grid pattern. Seeds were basically mature, and only a few immature seeds existed in some batches. Regarding primary metabolite content, wild GF exhibited significantly higher total polysaccharide level than cultivated GF(P<0.01). In category-specific component content, wild GF exhibited significantly higher levels of total flavonoids and total polyphenols compared to cultivated GF(P<0.01). Analysis of 12 secondary metabolites revealed that wild GF exhibited significantly higher levels of Shanzhiside, deacetyl asperulosidic acid methyl ester, gardenoside and chlorogenic acid compared to cultivated GF(P<0.01). Conversely, the contents of genipin 1-gentiobioside, geniposide and genipin were significantly lower in wild GF(P<0.01). ConclusionThere are significant differences between wild and cultivated GF in terms of traits, microstructure, and contents of primary and secondary metabolites. At present, the quality evaluation system of cultivated GF remains incomplete, and this study provides a reference for guiding the production of high-quality GF medicinal materials.
2.Sequential Administration of Dihuang Baoyuan Granules and Fuling Yunhua Granules for Teating Type 2 Diabetes Mellitus in Mice
Huiyi XIE ; Junran CHEN ; Boning HUANG ; Xinrong YANG ; Fangle LIU ; Yuying ZHENG ; Haiyu ZHAO ; Tianbao HU ; Baoqin LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):155-163
ObjectiveTo investigate the therapeutic effect of sequential administration of Dihuang Baoyuan granules (DHBY, the prescription for consolidating body resistance) and Fuling Yunhua granules (FLYH, the prescription for treating symptoms) on spontaneous type 2 diabetes mellitus (T2DM) in mice. MethodsAccording to the fasting blood glucose (FBG) level, 12-week-old db/db mice were randomized into six groups: model, DHBY (18.02 g·kg-1), FLYH (14.80 g·kg-1), sequential administration 1 (SEQ-1, DHBY 18.02 g·kg-1+FLYH 14.80 g·kg-1), sequential administration 2 (SEQ-2, FLYH 14.80 g·kg-1+DHBY 18.02 g·kg-1), and dapagliflozin (Dapa, 1.3 mg·kg-1). The m/m mice in the same litter were selected as the normal group. The mice were administrated with corresponding drugs by gavage for 8 consecutive weeks. During the 8 weeks of drug administration and 2 weeks after withdrawal, the retinal thickness, FBG, hemoglobin A1c (HbA1c), and insulin were determined, and histopathological changes of the pancreas, liver, kidney, and retina were observed by hematoxylin-eosin (HE) staining. ResultsCompared with the model group, SEQ-1 for 4 weeks lowered the FBG level (P<0.05), raised the insulin level, decreased the triglyceride (TG) level (P<0.05), increased the number of optic ganglion cells and diminished vacuolar degeneration of pancreatic islet and liver. SEQ-2 lowered FBG and HbA1c levels (P<0.05), rose the insulin level, increased the retinal thickness and the number of optic ganglion cells (P<0.05), and alleviated vacuolar degeneration of pancreatic islet and liver. Two weeks after drug withdrawal, Dapa tended to increase FBG and HbA1c compared with those at the time of drug withdrawal. However, the levels of FBG and HbA1c in the SEQ-2 group remained decreasing (P<0.05). ConclusionSEQ-1 and SEQ-2 can lower the blood glucose level and ameliorate diabetic retinopathy, and SEQ-2 outperformed DHBY and FLYH in lowering the blood glucose level. Moreover, SEQ-2 can maintain the blood glucose-lowering effect after drug withdrawal.
3.Sequential Administration of Dihuang Baoyuan Granules and Fuling Yunhua Granules for Teating Type 2 Diabetes Mellitus in Mice
Huiyi XIE ; Junran CHEN ; Boning HUANG ; Xinrong YANG ; Fangle LIU ; Yuying ZHENG ; Haiyu ZHAO ; Tianbao HU ; Baoqin LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):155-163
ObjectiveTo investigate the therapeutic effect of sequential administration of Dihuang Baoyuan granules (DHBY, the prescription for consolidating body resistance) and Fuling Yunhua granules (FLYH, the prescription for treating symptoms) on spontaneous type 2 diabetes mellitus (T2DM) in mice. MethodsAccording to the fasting blood glucose (FBG) level, 12-week-old db/db mice were randomized into six groups: model, DHBY (18.02 g·kg-1), FLYH (14.80 g·kg-1), sequential administration 1 (SEQ-1, DHBY 18.02 g·kg-1+FLYH 14.80 g·kg-1), sequential administration 2 (SEQ-2, FLYH 14.80 g·kg-1+DHBY 18.02 g·kg-1), and dapagliflozin (Dapa, 1.3 mg·kg-1). The m/m mice in the same litter were selected as the normal group. The mice were administrated with corresponding drugs by gavage for 8 consecutive weeks. During the 8 weeks of drug administration and 2 weeks after withdrawal, the retinal thickness, FBG, hemoglobin A1c (HbA1c), and insulin were determined, and histopathological changes of the pancreas, liver, kidney, and retina were observed by hematoxylin-eosin (HE) staining. ResultsCompared with the model group, SEQ-1 for 4 weeks lowered the FBG level (P<0.05), raised the insulin level, decreased the triglyceride (TG) level (P<0.05), increased the number of optic ganglion cells and diminished vacuolar degeneration of pancreatic islet and liver. SEQ-2 lowered FBG and HbA1c levels (P<0.05), rose the insulin level, increased the retinal thickness and the number of optic ganglion cells (P<0.05), and alleviated vacuolar degeneration of pancreatic islet and liver. Two weeks after drug withdrawal, Dapa tended to increase FBG and HbA1c compared with those at the time of drug withdrawal. However, the levels of FBG and HbA1c in the SEQ-2 group remained decreasing (P<0.05). ConclusionSEQ-1 and SEQ-2 can lower the blood glucose level and ameliorate diabetic retinopathy, and SEQ-2 outperformed DHBY and FLYH in lowering the blood glucose level. Moreover, SEQ-2 can maintain the blood glucose-lowering effect after drug withdrawal.
4.Exploring Quality Makers of Xiaoqinglong Granules in Treating Bronchial Asthma Based on Analytic Hierarchy Process-entropy Weight Method, Network Pharmacology and Molecular Docking
Huijuan XIE ; Zhuqian TANG ; Dan HU ; Yingbi XU ; Li HAN ; Bin YANG ; Hua LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):192-200
ObjectiveTo investigate the quality markers of Xiaoqinglong granules(XQLG) for treating bronchial asthma using the analytic hierarchy process(AHP)-entropy weight method(EWM), network pharmacology and high performance liquid chromatography(HPLC) content determination. MethodsEffectiveness, testability and peculiarity component data of XQLG in treating bronchial asthma were constructed through database retrieval, literature review, and network pharmacology. Subsequently, AHP-EWM was used to quantitatively identify and weight the control layer and element layer, the relevant compounds were selected as candidate quality markers based on comprehensive scores. Further comparison of reference substances and establishment of HPLC content determination method were used to determine the potential quality markers of XQLG, which were verified by molecular docking with disease targets. ResultsA total of 13 components, including glycyrrhizic acid, paeoniflorin, schisandrol A, isoliquiritigenin, 6-gingerol, ephedrine, liquiritin, albiflorin, liquiritigenin, 6-shogaol, pseudoephedrine, cinnamic acid and cinnamaldehyde, were identified as potential quality markers of XQLG by AHP-EWM. Quantitative analysis indicated that all aforementioned quality markers could be detected in 13 batches of XQLG, indicating that it had stable testability as a quality marker. Among these 13 batches of samples, ephedrine and paeoniflorin exhibited good consistency in content, while pseudoephedrine and cinnamaldehyde showed poor consistency. Molecular docking analysis revealed that the 13 compounds exhibited binding energies with the core targets -2.11 kcal·mol-1, indicating that the 13 compounds could spontaneously bind to the disease targets, which may be the material basis for the treatment of bronchial asthma with XQLG. ConclusionIn this study, 13 compounds were screened by AHP-EWM combined with network pharmacology and HPLC as quality markers for the treatment of bronchial asthma by XQLG, laying the foundation for enhancing the quality standards of this preparation.
5.Herbal Textual Research on Kochiae Fructus in Famous Classical Formulas
Huifang HU ; Liping YANG ; Fei CHEN ; Xiaohui MA ; Ling JIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):247-257
In this paper, by referring to ancient and modern literature, the textual research of Kochiae Fructus has been conducted to clarify the name, origin, distribution of production areas, quality specification, taste and efficacy, harvesting time, processing and compatibility taboo, so as to provide reference and basis for the development and utilization of related famous classical formulas. According to the investigation, it can be seen that Difuzi was first published in Sheng Nong's Herbal Classic, and has been used as the official name throughout history. It is also known by other names such as Dimai, Dikui, and Luozhou. The mainstream source of Difuzi in materia medica throughout history is the dried ripe fruit of Kochia scoparia, which is consistent throughout history. In the Han dynasty, it was recorded that Kochiae Fructus was produced in Jingzhou(Hubei province), while modern literature records its distribution throughout the country, so it does not have obvious geoherbalism. The harvesting period of Kochiae Fructus is mostly in the late autumn, and the quality is best when it is full, gray green in color, and no impurities. There are two processing methods for its origin:from the Southern and Northern dynasties to the Ming dynasty, it was dried in the shade, and after the founding of the People's Republic of China, it was dried in the sun. There are few records about the processing of Kochiae Fructus, and its clinical application is mostly based on raw products as medicine. The seedlings are harvested in February of the lunar calendar, and the leaves are taken in April and May, processing in the place of origin is shade drying, the processing methods include burning ash and frying frost, pounding juice and wine soaking. For internal use, it is mostly decocted or mashed, while for external use, it is mostly washed with decoction or taken in a soup bath. Throughout history, it has been recorded that Kochiae Fructus is bitter and cold, and is mainly used for treating bladder fever. After the founding of the People's Republic of China, most of the literature classified it as damp-clearing medicine. Since the 1985 edition of Chinese Pharmacopoeia, it has been recorded that Kochiae Fructus has a pungent and bitter taste, and a cold nature. Returning to the kidney and bladder meridians with functions of clearing heat and dampness, dispelling wind and relieving itching. The clinical contraindications are mainly prohibited for those with deficiency and no dampness and heat. Throughout history, it has been recorded that the taste of the seedlings and leaves is bitter and cold for treatment of dysentery. Since modern times, it has been used to regulate the liver, spleen and large intestine meridians, with functions such as clearing heat and detoxifying, and diuresis. Based on the textual research, it is recommended to use the dried ripe fruit of K. scoparia when developing the famous classical formulas containing Kochiae Fructus, and processing shall be carried out according to the original processing requirements. If the original formula does not specify the processing requirements, the raw products is taken into medicine.
6.Herbal Textual Research on Cnidii Fructus in Famous Classical Formulas
Huifang HU ; Liping YANG ; Fei CHEN ; Xiaohui MA ; Ling JIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):243-253
In this paper, by referring to ancient and modern literature, the textual research of Cnidii Fructus has been conducted to clarify the name, origin, distribution of production areas, quality specification, nature and flavour, efficacy, harvesting and processing, compatibility taboo and others, so as to provide reference and basis for the development and utilization of the relevant famous classical formulas. After textual research, it can be verified that Cnidii Fructus was first published in Sheng Nong's Herbal Classic, the materia medica of all dynasties was named Shechuangzi, and there are also aliases such as Shesu, Shemi, and Qiangmi. The main source for generations was the dried ripe fruit of Cnidium monnieri, and ancient and modern consistent. From the Eastern Han dynasty to Tang dynasty, the origin of Cnidii Fructus was Zibo, Shandong province. During the Five dynasties, it expanded to Yangzhou in Jiangsu province and Xiangyang in Hubei province, the Song dynasty added Shangqiu in Henan province, and it was considered that Yangzhou, Xiangyang and Shangqiu were its genuine producing areas. It was more widely distributed in Ming and Qing dynasties. After the founding of the People's Republic of China, the origin is clearly distributed throughout the country. For its quality evaluation, generally full grain, gray yellow color, strong aroma is the best. The harvesting period in the past dynasties was mostly the fifth lunar month, and the fruit was collected to remove impurities and dry. The mainstream processing in producing area of the past dynasties was net selection of raw products, mixing and steaming with the juice of Rehmanniae Radix and stir-frying were the mainstream processing methods in the past, there were also stir-frying with honey, stir-frying with salt and rice wine, immersing and steaming with rice wine and other methods. In recent times, it has been used in raw products as medicine. Sheng Nong's Herbal Classic recorded Cnidii Fructus was bitter, Supplementary Records of Famous Physicians recorded its acrid for the first time. It was recorded in the Ming dynasty that its nature was warm, acted on the kidney meridian, and had small toxicity. After the founding of the People's Republic of China, most of the literature classified it as a medicine to attack poison, kill insects and relieve itching with the functions of dispelling pathogenic wind and removing dampness, destroying parasites and elieving itching, warming kidney and activating Yang. Clinical contraindications are mainly contraindicated for people with damp-heat from the lower-jiao or kidney heat. Based on the textual research, it is suggested that when developing the famous classical formulas containing Cnidii Fructus, the source shall be the dried ripe fruit of C. monnieri, and then it shall be processed according to the original formulas. If there is no requirement for processing in the formulas, the raw products can be taken into medicine.
7.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
8.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
9.Chemical constituents of Sophorae Flavescentis Radix and its residue based on UPLC-Q-TOF-MS.
Qian-Wen LIU ; Rong-Qing ZHU ; Qian-Nan HU ; Xiang LI ; Guang YANG ; Zi-Dong QIU ; Zhi-Lai ZHAN ; Tie-Gui NAN ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2025;50(3):708-718
Sophorae Flavescentis Radix is one of the commonly used traditional Chinese medicine in China, and a large amount of pharmaceutical residue generated during its processing and production is discarded as waste, which not only wastes resources but also pollutes the environment. Therefore, elucidating the chemical composition of the residue of Sophorae Flavescentis Radix and the differences between the residue and Sophorae Flavescentis Radix itself is of great significance for the comprehensive utilization of the residue. This study, based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) technology combined with multivariate statistical methods, provides a thorough characterization, identification, and differential analysis of the overall components of Sophorae Flavescentis Radix and its residue. Firstly, 61 compounds in Sophorae Flavescentis Radix were rapidly identified based on their precise molecular weight, fragment ions, and compound abundance, using a self-constructed compound database. Among them, 41 compounds were found in the residue, mainly alkaloids and flavonoids. Secondly, through principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA), 15 key compounds differentiating Sophorae Flavescentis Radix from its residue were identified. These included highly polar alkaloids, such as oxymatrine and oxysophocarpine, which showed significantly reduced content in the residue, and less polar flavonoids, such as kurarinone and kuraridin, which were more abundant in the residue. In summary, this paper clarifies the overall composition, structure, and content differences between Sophorae Flavescentis Radix and its residue, suggesting that the residue of Sophorae Flavescentis Radix can be used as a raw material for the extraction of its high-activity components, with promising potential for development and application in cosmetics and daily care. This research provides a scientific basis for the future comprehensive utilization of Sophorae Flavescentis Radix and its residue.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry/methods*
;
Sophora/chemistry*
;
Flavonoids/chemistry*
;
Alkaloids/chemistry*
10.Application scenarios of rare and endangered Chinese medicinal materials and their substitutes.
Wen-Ting HU ; Xiao-Bo ZHANG ; Yi-Jing ZHANG ; Zhi-Yong LI ; Lan-Ping GUO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(10):2640-2647
Traditional Chinese medicine(TCM) resources are an important foundation for the theory and practice of TCM. Rare and endangered TCM, as a significant component of these resources, plays an essential role. Conducting research on substitutes for rare and endangered TCM resources is of great significance for alleviating resource shortages, promoting the sustainable utilization of TCM, and advancing TCM modernization. This paper reviews the conservation achievements of rare and endangered Chinese medicinal materials in China and organizes the substitution methods for these materials. Currently, the main substitution approaches include introduction and domestication, tissue culture, varietal replacement, and artificial synthesis. Furthermore, this paper proposes the following approaches for researching the application scenarios of rare and endangered medicinal materials, i.e., tracing the historical context of their use to clarify foundational principles; verifying disease classifications to strengthen the clinical application scenarios of these materials; analyzing the evolution patterns of prescription formulations to strengthen the mining of the compatibility application scenarios of rare and endangered medicinal materials; scientifically evaluating to strengthen the application scenario research and development of endangered Chinese patent medicine industry. These efforts aim to promote the scientific substitution and sustainable utilization of rare and endangered medicinal materials and their substitutes.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
China
;
Plants, Medicinal/growth & development*
;
Endangered Species
;
Conservation of Natural Resources
;
Animals

Result Analysis
Print
Save
E-mail