1.Mechanisms of Zhuyuwan in Treating both Intrahepatic Cholestasis and Ulcerative Colitis Based on Homotherapy for Heteropathy
Jun HAN ; Yueqiang WEN ; Zongying XU ; Dan LUO ; Li ZHOU ; Xueyi LI ; Yufan DAI ; Lele YANG ; Tao SHEN ; Han YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):46-53
ObjectiveThe theory of homotherapy for heteropathy is one of the classical rules in traditional Chinese medicine. Taking this theory as a breakthrough point, this study employed gas chromatography-mass spectrometry (GC-MS) to elucidate the mechanism underlying the therapeutic effects of Zhuyuwan on both intrahepatic cholestasis (IC) and ulcerative colitis (UC) from the viewpoint of serum metabolic homeostasis. MethodsThe rat models of α-naphthylisothiocyanate (ANIT)-induced cholestasis and 2,4,6-trinitro-benzenesulfonic acid (TNBS)-induced UC were treated with low (0.6 g·kg-1) and high (1.2 g·kg-1) doses of Zhuyuwan by gavage. In the experiment regarding IC, 24 Sprague-Dawley (SD) rats were randomly assigned into four groups: normal, ANIT model, low-dose Zhuyuwan, and high-dose Zhuyuwan. In the experiment regarding UC, 24 SD rats were randomly allocated into four groups: normal, TNBS model, low-dose Zhuyuwan, and high-dose Zhuyuwan. Firstly, the two disease models and the intervention effects of Zhuyuwan on the two diseases were evaluated based on serum levels of biochemical indicators [alanine aminotransferase (ALT), aspartate transaminase (AST), γ-glutamyltranspeptidase (γ-GT), and total bile acid (TBA)], colon damage score, colon weight index, disease activity index, and histopathological changes in rats. Secondly, the rat serum samples were analyzed by gas chromatography-mass spectrometry (GC-MS) to screen the common core pathways of the two disease models, and the expression of core genes in the pathways was determined by Real-time PCR, on the basis of which the biological mechanism of the treatment of the two disease models by Zhuyuwan was ultimately elucidated. ResultsThe results of the experiment regarding IC showed that the ANIT model group had higher ALT, AST, γ-GT, and TBA levels than the normal group (P<0.01). Compared with the ANIT model group, the low-dose Zhuyuwan group showed declined ALT and TBA levels (P<0.01) and the high-dose Zhuyuwan group showed lowered ALT, TBA, AST, and γ-GT levels (P<0.01). The results of the experiment regarding UC showed that compared with the normal group, the TNBS model group presented increases in the colonic damage score, colon weight index, and disease activity index (P<0.01). Compared with the TNBS model group, the low-dose Zhuyuwan group showcased declines in colon weight index (P<0.01) and disease activity index (P<0.05), and the high-dose Zhuyuwan group showed reductions in the colon damage score, colon weight index, and disease activity index (P<0.01). GC-MS metabolomics analysis combined with qRT-PCR demonstrated that Zhuyuwan had a similar inverse regulatory effect on arginine metabolism disruption in the above two disease models. ConclusionZhuyuwan exhibited definite therapeutic effects on both IC and UC, and the regulation of arginine biosynthesis pathway is the core mechanism for the treatment of both diseases by Zhuyuwan.
2.Mechanisms of Zhuyuwan in Treating both Intrahepatic Cholestasis and Ulcerative Colitis Based on Homotherapy for Heteropathy
Jun HAN ; Yueqiang WEN ; Zongying XU ; Dan LUO ; Li ZHOU ; Xueyi LI ; Yufan DAI ; Lele YANG ; Tao SHEN ; Han YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):46-53
ObjectiveThe theory of homotherapy for heteropathy is one of the classical rules in traditional Chinese medicine. Taking this theory as a breakthrough point, this study employed gas chromatography-mass spectrometry (GC-MS) to elucidate the mechanism underlying the therapeutic effects of Zhuyuwan on both intrahepatic cholestasis (IC) and ulcerative colitis (UC) from the viewpoint of serum metabolic homeostasis. MethodsThe rat models of α-naphthylisothiocyanate (ANIT)-induced cholestasis and 2,4,6-trinitro-benzenesulfonic acid (TNBS)-induced UC were treated with low (0.6 g·kg-1) and high (1.2 g·kg-1) doses of Zhuyuwan by gavage. In the experiment regarding IC, 24 Sprague-Dawley (SD) rats were randomly assigned into four groups: normal, ANIT model, low-dose Zhuyuwan, and high-dose Zhuyuwan. In the experiment regarding UC, 24 SD rats were randomly allocated into four groups: normal, TNBS model, low-dose Zhuyuwan, and high-dose Zhuyuwan. Firstly, the two disease models and the intervention effects of Zhuyuwan on the two diseases were evaluated based on serum levels of biochemical indicators [alanine aminotransferase (ALT), aspartate transaminase (AST), γ-glutamyltranspeptidase (γ-GT), and total bile acid (TBA)], colon damage score, colon weight index, disease activity index, and histopathological changes in rats. Secondly, the rat serum samples were analyzed by gas chromatography-mass spectrometry (GC-MS) to screen the common core pathways of the two disease models, and the expression of core genes in the pathways was determined by Real-time PCR, on the basis of which the biological mechanism of the treatment of the two disease models by Zhuyuwan was ultimately elucidated. ResultsThe results of the experiment regarding IC showed that the ANIT model group had higher ALT, AST, γ-GT, and TBA levels than the normal group (P<0.01). Compared with the ANIT model group, the low-dose Zhuyuwan group showed declined ALT and TBA levels (P<0.01) and the high-dose Zhuyuwan group showed lowered ALT, TBA, AST, and γ-GT levels (P<0.01). The results of the experiment regarding UC showed that compared with the normal group, the TNBS model group presented increases in the colonic damage score, colon weight index, and disease activity index (P<0.01). Compared with the TNBS model group, the low-dose Zhuyuwan group showcased declines in colon weight index (P<0.01) and disease activity index (P<0.05), and the high-dose Zhuyuwan group showed reductions in the colon damage score, colon weight index, and disease activity index (P<0.01). GC-MS metabolomics analysis combined with qRT-PCR demonstrated that Zhuyuwan had a similar inverse regulatory effect on arginine metabolism disruption in the above two disease models. ConclusionZhuyuwan exhibited definite therapeutic effects on both IC and UC, and the regulation of arginine biosynthesis pathway is the core mechanism for the treatment of both diseases by Zhuyuwan.
3.Comprehensive value of novel oral anticoagulant drugs after major orthopedic surgery based on multi-criteria decision analysis
Xinru LIU ; Xindie ZHOU ; Yang YANG ; Jinhong GONG ; Shan XU ; Dan SU ; Jingjing SHANG
China Pharmacy 2025;36(13):1661-1665
OBJECTIVE To evaluate the comprehensive value of novel oral anticoagulant drugs (NOACs) after major orthopedic surgery. METHODS The evaluation evidence was collected through literature research; evidence and value:impact on decision-making (EVIDEM) framework was introduced to integrate the evaluation process; the multi-criteria decision analysis (MCDA) method was used to construct a multi-dimensional evaluation system; the weights assigned to each evaluation criterion were determined by the combination of Delphi method and analytic hierarchy process, and the rivaroxaban, dabigatran and apixaban were comprehensively evaluated. RESULTS The clinical comprehensive evaluation system of NOACs after major orthopedic surgery was successfully established, and the final clinical comprehensive evaluation weights of NOACs (rivaroxaban, dabigatran, apixaban) after major orthopedic surgery were calculated, with scores of 0.399 7 for rivaroxaban, 0.244 4 for apixaban, and 0.355 9 for dabigatran, indicating that rivaroxaban demonstrated the highest overall clinical value. Among them, rivaroxaban had the highest weight score in the evaluation of pharmaceutical characteristics, cost-effectiveness and other attributes in a single dimension. In terms of efficacy and safety evaluation, apixaban had the highest weighting score. CONCLUSIONS Among NOACs, rivaroxaban is more suitable for routine anticoagulation management after major orthopedic surgery, especially in terms of pharmacological properties, cost-effectiveness and other attributes.
4.SIRT3 protects endometrial receptivity in patients with polycystic ovary syndrome.
Zhonghong ZENG ; Hongying SHAN ; Mingmei LIN ; Siyu BAO ; Dan MO ; Feng DENG ; Yang YU ; Yihua YANG ; Ping ZHOU ; Rong LI
Chinese Medical Journal 2025;138(10):1225-1235
BACKGROUND:
The sirtuin family is well recognized for its crucial involvement in various cellular processes. Nevertheless, studies on its role in the human endometrium are limited. This study aimed to explore the expression and localization of the sirtuin family in the human endometrium, focusing on sirtuin 3 (SIRT3) and its potential role in the oxidative imbalance of the endometrium in polycystic ovary syndrome (PCOS).
METHODS:
Endometrial specimens were collected from both patients with PCOS and controls undergoing hysteroscopy at the Center for Reproductive Medicine, Peking University Third Hospital, from July to August 2015 and used for cell culture. The protective effects of SIRT3 were investigated, and the mechanism of SIRT3 in improving endometrial receptivity of patients with PCOS was determined using various techniques, including cellular bioenergetic analysis, small interfering ribonucleic acid (siRNA) silencing, real-time quantitative polymerase chain reaction, Western blot, immunofluorescence, immunohistochemistry, and flow cytometry analysis.
RESULTS:
The sirtuin family was widely expressed in the human endometrium, with SIRT3 showing a significant increase in expression in patients with PCOS compared with controls ( P <0.05), as confirmed by protein and gene assays. Concurrently, endometrial antioxidant levels were elevated, while mitochondrial respiratory capacity was reduced, in patients with PCOS ( P <0.05). An endometrial oxidative stress (OS) model revealed that the downregulation of SIRT3 impaired the growth and proliferation status of endometrial cells and reduced their receptivity to day 4 mouse embryos. The results suggested that SIRT3 might be crucial in maintaining normal cellular state by regulating antioxidants, cell proliferation, and apoptosis, thereby contributing to enhanced endometrial receptivity.
CONCLUSIONS
Our findings proposed a significant role of SIRT3 in improving endometrial receptivity in patients with PCOS by alleviating OS and regulating the balance between cell proliferation and apoptosis. Therefore, SIRT3 could be a promising target for predicting and improving endometrial receptivity in this patient population.
Humans
;
Female
;
Polycystic Ovary Syndrome/metabolism*
;
Endometrium/metabolism*
;
Sirtuin 3/genetics*
;
Oxidative Stress/genetics*
;
Adult
;
Animals
;
Mice
;
Apoptosis/physiology*
;
Immunohistochemistry
;
Cell Proliferation/physiology*
5.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
6.Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective.
Song-Po LIU ; Yun-Fei LI ; Dan ZHANG ; Chun-Yang LI ; Xiao-Fang DAI ; Dong-Feng LAN ; Ji CAI ; He ZHOU ; Tao SONG ; Yan-Yu ZHAO ; Zhi-Xu HE ; Jun TAN ; Ji-Dong ZHANG
Asian Journal of Andrology 2025;27(1):20-29
Compounds isolated from Epimedium include the total flavonoids of Epimedium , icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium , its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.
Male
;
Epimedium/chemistry*
;
Humans
;
Genitalia, Male/drug effects*
;
Flavonoids/therapeutic use*
;
Animals
7.Retrospective Analysis of Venetoclax Combined with Azacitidine Compared with "3+7" or Similar Regimens for Newly Diagnosed Patients with Acute Myeloid Leukemia.
Lu-Lu WANG ; Juan ZHANG ; Yue ZHANG ; Yong ZHANG ; Xiao-Min DONG ; Dan-Yang ZHANG ; Ting-Ting CHEN ; Yun-Hui ZHOU ; Teng WANG ; Hui-Ling LAN ; He-Bing ZHOU
Journal of Experimental Hematology 2025;33(3):672-681
OBJECTIVE:
To retrospectively analyze the clinical data of newly diagnosed acute myeloid leukemia (AML) patients treated with venetoclax combined with azacitidine (Ven/Aza) or standard "3+7" regimen and similar regimens, collect real-world study data, compare the treatment response and adverse events between the two regimens, as well as perform survival analysis.
METHODS:
To retrospectively analyze the efficacy, survival, and adverse reactions of newly diagnosed AML patients treated with Ven/Aza (24 cases) and "3+7" regimens (117 cases ) in our hospital from September 2009 to March 2023, as well as factors influencing outcomes. A propensity score matching (PSM) was performed on age and Eastern Cooperative Oncology Group performance status (ECOG PS) to obtain a 1:1 matched cohort of 20 pairs, and the efficacy and survival before and after the matching were compared.
RESULTS:
The median age of patients in the Ven/Aza group was 69 years, while that in the "3+7" group was 56 years (P <0.001). Objective remission rate (ORR) was 62.5% in Ven/Aza group and 74.8% in "3+7" group (P >0.05). The median overall survival (OS) in the Ven/Aza group was 522 days, while that in the "3+7" group was 1 002 days (P >0.05). After controlling the two variables of age and ECOG PS, a PSM cohort of 20 pairs was obtained, in which the ORR was 65% in Ven/Aza group and 60% in "3+7" group (P >0.05). The median OS was 522 days and 629 days, and median progression-free survival (PFS) was 531 days and 198 days between the two groups, respectively. There were no statistically significant differences in OS and PFS between the two groups (both P >0.05). Additionally, the incidence of adverse events in the Ven/Aza group was significantly reduced.
CONCLUSION
The overall cohort shows that the "3+7" regimen has advantages in efficacy and survival, but Ven/Aza regimen is relatively safer. After performing PSM on age and ECOG PS, the Ven/Aza group showed improved efficacy, and a longer median PFS compared to "3+7" group.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Retrospective Studies
;
Sulfonamides/administration & dosage*
;
Azacitidine/administration & dosage*
;
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage*
;
Aged
;
Middle Aged
;
Male
;
Female
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Treatment Outcome
8.BRD4 regulates m6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression.
Haisheng ZHANG ; Linlin LU ; Cheng YI ; Tao JIANG ; Yunqing LU ; Xianyuan YANG ; Ke ZHONG ; Jiawang ZHOU ; Jiexin LI ; Guoyou XIE ; Zhuojia CHEN ; Zongpei JIANG ; Gholamreza ASADIKARAM ; Yanxi PENG ; Dan ZHOU ; Hongsheng WANG
Acta Pharmaceutica Sinica B 2025;15(3):1552-1570
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
9.ALKBH3-regulated m1A of ALDOA potentiates glycolysis and doxorubicin resistance of triple negative breast cancer cells.
Yuhua DENG ; Zhiyan CHEN ; Peixian CHEN ; Yaming XIONG ; Chuling ZHANG ; Qiuyuan WU ; Huiqi HUANG ; Shuqing YANG ; Kun ZHANG ; Tiancheng HE ; Wei LI ; Guolin YE ; Wei LUO ; Hongsheng WANG ; Dan ZHOU
Acta Pharmaceutica Sinica B 2025;15(6):3092-3106
Chemotherapy is currently the mainstay of systemic management for triple-negative breast cancer (TNBC), but chemoresistance significantly impacts patient outcomes. Our research indicates that Doxorubicin (Dox)-resistant TNBC cells exhibit increased glycolysis and ATP generation compared to their parental cells, with this metabolic shift contributing to chemoresistance. We discovered that ALKBH3, an m1A demethylase enzyme, is crucial in regulating the enhanced glycolysis in Dox-resistant TNBC cells. Knocking down ALKBH3 reduced ATP generation, glucose consumption, and lactate production, implicating its involvement in mediating glycolysis. Further investigation revealed that aldolase A (ALDOA), a key enzyme in glycolysis, is a downstream target of ALKBH3. ALKBH3 regulates ALDOA mRNA stability through m1A demethylation at the 3'-untranslated region (3'UTR). This methylation negatively affects ALDOA mRNA stability by recruiting the YTHDF2/PAN2-PAN3 complex, leading to mRNA degradation. The ALKBH3/ALDOA axis promotes Dox resistance both in vitro and in vivo. Clinical analysis demonstrated that ALKBH3 and ALDOA are upregulated in breast cancer tissues, and higher expression of these proteins is associated with reduced overall survival in TNBC patients. Our study highlights the role of the ALKBH3/ALDOA axis in contributing to Dox resistance in TNBC cells through regulation of ALDOA mRNA stability and glycolysis.
10.Single-cell RNA sequencing reveals Shen-Bai-Jie-Du decoction retards colorectal tumorigenesis by regulating the TMEM131-TNF signaling pathway-mediated differentiation of immunosuppressive dendritic cells.
Yuquan TAO ; Yinuo MA ; Limei GU ; Ye ZHANG ; Qinchang ZHANG ; Lisha ZHOU ; Jie PAN ; Meng SHEN ; Xuefei ZHUANG ; Linmei PAN ; Weixing SHEN ; Chengtao YU ; Dan DONG ; Dong ZHANG ; Tingsheng LING ; Yang SUN ; Haibo CHENG
Acta Pharmaceutica Sinica B 2025;15(7):3545-3560
Colorectal tumorigenesis generally progresses from adenoma to adenocarcinoma, accompanied by dynamic changes in the tumor microenvironment (TME). A randomized controlled trial has confirmed the efficacy and safety of Shen-Bai-Jie-Du decoction (SBJDD) in preventing colorectal tumorigenesis. However, the mechanism remains unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) to investigate the dynamic evolution of the TME and validated cell infiltration with multiplex immunohistochemistry and flow cytometry. Bulk RNA sequencing was utilized to assess the underlying mechanisms. Our results constructed the mutually verifiable single-cell transcriptomic atlases in Apc Min/+ mice and clinical patients. There was a marked accumulation of CCL22+ dendritic cells (DCs) and an enhanced immunosuppressive action, which SBJDD and berberine reversed. Combined treatment with cholesterol and lipopolysaccharide induced characteristic gene expression of CCL22+ DCs, which may represent "exhausted DCs". Intraperitoneal injection of these DCs after SBJDD treatment eliminated its therapeutic effects. TMEM131 derived CCL22+ DCs generation by TNF signaling pathway and may be a potential target of berberine in retarding colorectal tumorigenesis. These findings emphasize the role of exhausted DCs and the regulatory mechanisms of SBJDD and berberine in colorectal cancer (CRC), suggesting that the multi-component properties of SBJDD may help restore TME homeostasis and offer novel cancer therapy.

Result Analysis
Print
Save
E-mail