1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
7.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*
8.Clinical Features and Prognosis of Primary Tonsil Lymphoma.
Dan LUO ; Qi-Miao SHAN ; Hua DING ; Jiao LIU ; Zi-Qing HUANG ; Feng ZHU
Journal of Experimental Hematology 2025;33(4):1042-1046
OBJECTIVE:
To investigate the clinical features and prognostic factors of primary tonsil lymphoma (PTL).
METHODS:
The clinical data of 41 patients diagnosed with PTL and treated in the Affiliated Hospital of Xuzhou Medical University from January 2015 to December 2022 were collected and retrospectively analyzed. Their clinical features and prognostic factors were analyzed.
RESULTS:
All the 41 patients were newly diagnosed with PTL, and the median age of onset was 58(19-85) years. Among them, 19 patients started with pharyngeal pain, 12 patients presented with dysphagia, 8 patients presented with pharyngeal mass, and 2 patients presented with blurred articulation. The most common pathological type was diffuse large B-cell lymphoma (24 cases, 58.54%). All patients received chemotherapy, and 3 patients were combined with hematopoietic stem cell transplantation. Among 41 patients, 11 (26.83%) achieved complete response, 14 (34.15%) achieved partial response, and the total response rate was 60.98% (25/41). The median follow-up time was 37(6-107) months, the 5-year overall survival (OS) rate was 70.81% and 5-year progression-free survival (PFS) rate was 66.20%. Univariate analysis showed that B symptoms, Ki-67, β2-MG and IPI score had significant effects on PFS and OS of patients (all P < 0.05). Multivariate analysis showed that IPI score was an independent risk factor for PFS and OS of patients (P < 0.05).
CONCLUSION
The clinical manifestations of PTL lack specificity, and the prognosis is relatively good. Most patients can achieve long-term survival after treatment. IPI score is related to the prognosis.
Tonsillar Neoplasms/pathology*
;
Lymphoma/pathology*
;
Humans
;
Prognosis
;
Retrospective Studies
;
Drug Therapy
;
Progression-Free Survival
;
Male
;
Female
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Lymphoma, B-Cell/pathology*
;
Survival Rate
9.Bioequivalence study of rasagiline mesylate tablets in Chinese healthy subjects
Gang CHEN ; Xiao-Lin WANG ; Si-Qi ZANG ; Ze-Juan WANG ; Xiao-Na LIU ; Ai-Hua DU ; Min LI ; Ya-Nan ZHANG ; Dan ZHANG ; Li-Na ZHANG ; Jin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(19):2885-2890
Objective To study the pharmacokinetics and bioequivalence of two formulations of rasagiline mesylate tablets in healthy subjects under fasting and fed conditions.Methods The two-period,two-sequence,crossover study design was adopted in the fasting study.Thirty-six subjects were enrolled and given either test preparation or reference preparation 1 mg respectively in two periods.After collecting plasma samples,the plasma concentration of rasagiline was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)and the bioequivalence was evaluated using the average bioequivalence(ABE)method.The four-period,two-sequence,fully replicate crossover study design was adopted in the fed study.Forty-eight subjects were enrolled and given the test preparation or the reference preparation at a dose of 1 mg twice respectively in four periods.According to the degree of intra-individual variation of Cmax,AUC0-t and AUC0-∞,the equivalence was evaluated using the reference-scaled average bioequivalence and ABE method,respectively.Results In the fasting study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(9.70±3.14)and(9.62±3.85)ng·mL-1,AUC0-t were(6.03±1.47)and(6.02±1.95)ng·h·mL-1,AUC0-∞ were(6.13±1.51)and(6.12±1.97)ng·h·mL-1.The 90%confidence interval(CI)of the geometric mean ratio(GMR)were 94.11%-118.06%,99.22%-107.74%and 99.16%-107.44%for Cmax,AUC0-t and AUC0-∞,respectively,which were within the acceptance criteria of 80.00%-125.00%.In the fed study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(3.00±1.92)and(3.52±1.77)ng·mL-1,AUC0_t were(5.02±1.20)and(5.06±1.20)ng·h·mL-1,AUC0-∞ were(5.11±1.23)and(5.14±1.22)ng·h·mL-1.The 90%CI of GMR were 96.99%-101.19%and 97.17%-101.41%for AUC0-t and AUC0-∞,which were within the acceptance criteria of 80.00%-125.00%.The 95%upper confidence bound of Cmax for were less than"0",and the point estimate of GMR were within the acceptance criteria of 80.00%-125.00%.The incidence of adverse events in fasting and fed studies was 22.86%and 22.92%,respectively,and all adverse events were moderate to mild.Conclusion The two rasagiline mesylate tablets were bioequivalent,and both the formulations were well tolerated.

Result Analysis
Print
Save
E-mail