1.Factors Influencing Flow Cytometry-based Cell Cycle Detection and Analysis of Various Immune Cell Subpopulations
Dan LIU ; Jie ZHANG ; Zheng-Yang GUO ; Li-Xiang XUE ; Yu-Qing WANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1308-1316
Cell cycle analysis is essential for determining the cell proliferation state,studying cell func-tions,and evaluating drug effects.Flow cytometry is a commonly used method for cell cycle detection,with propidium iodide(PI)being the most widely used fluorescein.Nevertheless,various factors may af-fect the test results.Additionally,comparing distributions of immune cell subpopulations across different cell cycle stages can provide valuable insights into immunological responses and disease conditions.In this research,the B16-F10 cell line was used to study the impact of three factors on PI staining-based cell cycle detection:fixation settings,sample preparation conditions,and software analysis.To fix cells,it is suggested to suspend 3 × 106 cells in 300 μL of pre-cooled PBS,add 700 μL of 100%ethanol drop-wise,fix overnight at 4℃ or-20℃,and collect at a low flow rate(400-600 events/s)to ensure collec-tion of at least 3 000 singlets.Furthermore,dual-labeling with 5-ethynyl-2'-deoxyuridine(EdU)and PI can accurately distinguish cell cycle phases.And various immune cell subpopulations can be analyzed without cell sorting by combining surface marker staining with PI and Ki-67 staining.Here we review fac-tors affecting cell cycle identification using the PI staining method and provide a standard operating proto-col for the experiment.We established the method to combine EdU with PI for cell cycle detection and a-nalysis of immune cell subpopulations,thus expanding the approaches for cell cycle detection.
2.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
3.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
6.Effect of VEGF on the expression of genes related to ovarian steroid synthesis in mice and its mechanism
Zhi-Hui ZHANG ; Hong-Xia GAO ; Guo-Qing WANG ; Wei HOU ; Chang ZOU ; Xiao-Dan LU
Medical Journal of Chinese People's Liberation Army 2024;49(6):679-685
Objective To investigate the effect of vascular endothelial growth factor(VEGF)on the expression of genes related to ovarian steroid synthesis in mice and its underlying mechanism.Methods A transgenic mouse model with tetracycline-reversible regulation of VEGF expression was used,and the genotype of mice was identified by polymerase chain reaction(PCR).Twenty mice were divided into normal VEGF expression group(Dox+,n=10)and VEGF expression inhibition group(Dox-,n=10)by feeding them doxycycline.Western blotting was used to detect the expression of VEGF protein in ovarian tissues.Fluorescence quantitative PCR was used to detect the mRNA expression of VEGF,KDR and genes known to play roles in follicle development,such as follicle-stimulating hormone(FSH)and inhibin B(INHBB).HE staining was used to observe changes in ovarian tissue.Total RNA was extracted from mouse ovarian tissues for transcriptome sequencing,and the relevant differential genes were analyzed by FPKM and log2FC values.Results Compared with the Dox+group,the mRNA and protein levels of VEGF in the Dox-group significantly reduced,and the mRNA levels of KDR also significantly decreased(P<0.05).HE staining results showed that compared with the Dox+group,follicular development was impaired and atresia follicles appeared in the Dox-group.Sequencing analysis identified that significant differences in follicular development-related genes and steroid synthesis-related genes between the two groups(P<0.05).Enrichment analysis showed that VEGF in mouse ovaries mainly regulates ovarian steroidogenesis and other pathways.Fluorescence quantitative PCR results demonstrated that compared with the Dox+group,the follicular development-related genes(INHBB and FSHR)in the ovarian tissues of the Dox-group were significantly up-regulated(P<0.05),whereas the key genes of steroid synthesis(StAR,CYP11A1,3β-HSD)were significantly down-regulated(P<0.05).The quantitative results were basically consistent with the sequencing results.Conclusion Mice with inhibited VEGF exhibited ovarian follicular dysplasia,potentially due to the mechanism whereby VEGF inhibition downregulated the expression of genes associated with steroid synthesis,such as FSH and INHBB,thereby obstructing cholesterol metabolism.
7.Bioinformatics analysis of sterol O⁃acyltransferase 1 gene related to hepatocellular carcinoma
CHENG Ri na ; WANG Xiao⁃yu ; MA Qing ; KONG Ling⁃hua ; ZHANG Yu⁃qi ; QIN Kai⁃li ; ZHAO Ying⁃zhu ; SU Dan ; GONG Tao ; GUO Rui
Chinese Journal of Biologicals 2023;36(1):26-31
Abstract:Objective To predict the structure and function of sterol O⁃acyltransferase 1(SOAT1)related to hepatocellular
carcinoma(HCC)by using bioinformatics tools,in order to understand its mechanism as the marker and therapeutic target
of S⁃Ⅲ subtype. Methods The structure,function and protein interaction of SOAT1 were predicted and analyzed by using
databases or softwares such as NCBI,STRING,Protscale,SignalP,TMHMM,PSORT,SOPMA,SWISS ⁃ MODEL,
NetNGlyc,NetOGlyc,Netphos and ProtParam. Results The protein encoded by SOAT1 was a hydrophobic protein with
good stability,which was a nonclassical pathway protein with 8 transmembrane regions,mainly distributed among the
cell membrane. SOAT1 was expressed in many tissues,while most of them in the adrenal gland,which showed multiple
phosphorylation sites and was mainly involved in the synthesis and catabolism of cholesterol. Conclusion Bioinformatics
analysis of structure and function of SOAT1 showed that SOAT1 lipid synthesis and catabolism pathways played an important
role,and lipid expression was closely related to the development of cancer,indicating that the treatment of HCC may be
achieved by regulating the expression of SOAT1 gene.
9.Status of fungal sepsis among preterm infants in 25 neonatal intensive care units of tertiary hospitals in China.
Xin Cheng CAO ; Si Yuan JIANG ; Shu Juan LI ; Jun Yan HAN ; Qi ZHOU ; Meng Meng LI ; Rui Miao BAI ; Shi Wen XIA ; Zu Ming YANG ; Jian Fang GE ; Bao Quan ZHANG ; Chuan Zhong YANG ; Jing YUAN ; Dan Dan PAN ; Jing Yun SHI ; Xue Feng HU ; Zhen Lang LIN ; Yang WANG ; Li Chun ZENG ; Yan Ping ZHU ; Qiu Fang WEI ; Yan GUO ; Ling CHEN ; Cui Qing LIU ; Shan Yu JIANG ; Xiao Ying LI ; Hui Qing SUN ; Yu Jie QI ; Ming Yan HEI ; Yun CAO
Chinese Journal of Pediatrics 2023;61(1):29-35
Objective: To analyze the prevalence and the risk factors of fungal sepsis in 25 neonatal intensive care units (NICU) among preterm infants in China, and to provide a basis for preventive strategies of fungal sepsis. Methods: This was a second-analysis of the data from the "reduction of infection in neonatal intensive care units using the evidence-based practice for improving quality" study. The current status of fungal sepsis of the 24 731 preterm infants with the gestational age of <34+0 weeks, who were admitted to 25 participating NICU within 7 days of birth between May 2015 and April 2018 were retrospectively analyzed. These preterm infants were divided into the fungal sepsis group and the without fungal sepsis group according to whether they developed fungal sepsis to analyze the incidences and the microbiology of fungal sepsis. Chi-square test was used to compare the incidences of fungal sepsis in preterm infants with different gestational ages and birth weights and in different NICU. Multivariate Logistic regression analysis was used to study the outcomes of preterm infants with fungal sepsis, which were further compared with those of preterm infants without fungal sepsis. The 144 preterm infants in the fungal sepsis group were matched with 288 preterm infants in the non-fungal sepsis group by propensity score-matched method. Univariate and multivariate Logistic regression analysis were used to analyze the risk factors of fungal sepsis. Results: In all, 166 (0.7%) of the 24 731 preterm infants developed fungal sepsis, with the gestational age of (29.7±2.0) weeks and the birth weight of (1 300±293) g. The incidence of fungal sepsis increased with decreasing gestational age and birth weight (both P<0.001). The preterm infants with gestational age of <32 weeks accounted for 87.3% (145/166). The incidence of fungal sepsis was 1.0% (117/11 438) in very preterm infants and 2.0% (28/1 401) in extremely preterm infants, and was 1.3% (103/8 060) in very low birth weight infants and 1.7% (21/1 211) in extremely low birth weight infants, respectively. There was no fungal sepsis in 3 NICU, and the incidences in the other 22 NICU ranged from 0.7% (10/1 397) to 2.9% (21/724), with significant statistical difference (P<0.001). The pathogens were mainly Candida (150/166, 90.4%), including 59 cases of Candida albicans and 91 cases of non-Candida albicans, of which Candida parapsilosis was the most common (41 cases). Fungal sepsis was independently associated with increased risk of moderate to severe bronchopulmonary dysplasia (BPD) (adjusted OR 1.52, 95%CI 1.04-2.22, P=0.030) and severe retinopathy of prematurity (ROP) (adjusted OR 2.55, 95%CI 1.12-5.80, P=0.025). Previous broad spectrum antibiotics exposure (adjusted OR=2.50, 95%CI 1.50-4.17, P<0.001), prolonged use of central line (adjusted OR=1.05, 95%CI 1.03-1.08, P<0.001) and previous total parenteral nutrition (TPN) duration (adjusted OR=1.04, 95%CI 1.02-1.06, P<0.001) were all independently associated with increasing risk of fungal sepsis. Conclusions: Candida albicans and Candida parapsilosis are the main pathogens of fungal sepsis among preterm infants in Chinese NICU. Preterm infants with fungal sepsis are at increased risk of moderate to severe BPD and severe ROP. Previous broad spectrum antibiotics exposure, prolonged use of central line and prolonged duration of TPN will increase the risk of fungal sepsis. Ongoing initiatives are needed to reduce fungal sepsis based on these risk factors.
Infant
;
Infant, Newborn
;
Humans
;
Birth Weight
;
Intensive Care Units, Neonatal
;
Retrospective Studies
;
Tertiary Care Centers
;
Infant, Extremely Low Birth Weight
;
Gestational Age
;
Infant, Extremely Premature
;
Sepsis/epidemiology*
;
Retinopathy of Prematurity/epidemiology*
;
Bronchopulmonary Dysplasia/epidemiology*
10.Hospitalization costs of pediatric community-acquired pneumonia in Shanghai.
Ying Zi YE ; Yong Hao GUI ; Quan LU ; Jian Guo HONG ; Rui FENG ; Bing SHEN ; Yue Jie ZHANG ; Xiao Yan DONG ; Ling SU ; Xiao Qing WANG ; Jia Yu WANG ; Dan Ping GU ; Hong XU ; Guo Ying HUANG ; Song Xuan YU ; Xiao Bo ZHANG
Chinese Journal of Pediatrics 2023;61(2):146-153
Objective: To investigate the epidemiology and hospitalization costs of pediatric community-acquired pneumonia (CAP) in Shanghai. Methods: A retrospective case summary was conducted on 63 614 hospitalized children with CAP in 59 public hospitals in Shanghai from January 2018 to December 2020. These children's medical records, including their basic information, diagnosis, procedures, and costs, were extracted. According to the medical institutions they were admitted, the patients were divided into the children's hospital group, the tertiary general hospital group and the secondary hospital group; according to the age, they were divided into <1 year old group, 1-<3 years old group, 3-<6 years old group, 6-<12 years old group and 12-18 years old group; according to the CAP severity, they were divided into severe pneumonia group and non-severe pneumonia group; according to whether an operation was conducted, the patients were divided into the operation group and the non-operation group. The epidemiological characteristics and hospitalization costs were compared among the groups. The χ2 test or Wilcoxon rank sum test was used for the comparisons between two groups as appropriate, and the Kruskal-Wallis H test was conducted for comparisons among multiple groups. Results: A total of 63 614 hospitalized children with CAP were enrolled, including 34 243 males and 29 371 females. Their visiting age was 4 (2, 6) years. The length of stay was 6 (5, 8) days. There were 17 974 cases(28.3%) in the secondary hospital group, 35 331 cases (55.5%) in the tertiary general hospital group and 10 309 cases (16.2%) in the children's hospital group. Compared with the hospitalizations cases in 2018 (27 943), the cases in 2019 (29 009) increased by 3.8% (1 066/27 943), while sharply declined by 76.2% (21 281/27 943) in 2020 (6 662). There were significant differences in the proportion of patients from other provinces and severe pneumonia cases, and the hospitalization costs among the children's hospital, secondary hospital and tertiary general hospital (7 146 cases(69.3%) vs. 2 202 cases (12.3%) vs. 9 598 cases (27.2%), 6 929 cases (67.2%) vs. 2 270 cases (12.6%) vs. 9 397 cases (26.6%), 8 304 (6 261, 11 219) vs. 1 882 (1 304, 2 796) vs. 3 195 (2 364, 4 352) CNY, χ2=10 462.50, 9 702.26, 28 037.23, all P<0.001). The annual total hospitalization costs of pediatric CAP from 2018 to 2020 were 110 million CNY, 130 million CNY and 40 million CNY, respectively. And the cost for each hospitalization increased year by year, which was 2 940 (1 939, 4 438), 3 215 (2 126, 5 011) and 3 673 (2 274, 6 975) CNY, respectively. There were also significant differences in the hospitalization expenses in the different age groups of <1 year old, 1-<3 years old, 3-<6 years old, 6-<12 years old and 12-18 years old (5 941 (2 787, 9 247) vs. 2 793 (1 803, 4 336) vs. 3 013 (2 070, 4 329) vs. 3 473 (2 400, 5 097) vs. 4 290 (2 837, 7 314) CNY, χ2=3 462.39, P<0.001). The hospitalization cost of severe pneumonia was significantly higher than that of non-severe cases (5 076 (3 250, 8 364) vs. 2 685 (1 780, 3 843) CNY, Z=109.77, P<0.001). The cost of patients who received operation was significantly higher than that of whom did not (10 040 (4 583, 14 308) vs. 3 083 (2 025, 4 747) CNY, Z=44.46, P<0.001). Conclusions: The number of children hospitalized with CAP in Shanghai decreased significantly in 2020 was significantly lower than that in 2018 and 2019.The proportion of patients from other provinces and with severe pneumonia are mainly admitted in children's hospitals. Hospitalization costs are higher in children's hospitals, and also for children younger than 1 year old, severe cases and patients undergoing operations.
Infant
;
Female
;
Male
;
Humans
;
Child
;
Retrospective Studies
;
China/epidemiology*
;
Hospitalization
;
Community-Acquired Infections/therapy*
;
Hospitals, Pediatric
;
Pneumonia/therapy*


Result Analysis
Print
Save
E-mail