1.Safety Profile of Biportal Endoscopic Spine Surgery Compared to Conventional Microscopic Approach: A Pooled Analysis of 2 Randomized Controlled Trials
Sang-Min PARK ; Kwang-Sup SONG ; Dae-Woong HAM ; Ho-Joong KIM ; Min-Seok KANG ; Ki-Han YOU ; Choon Keun PARK ; Dong-Keun LEE ; Jin-Sung KIM ; Hong-Jae LEE ; Hyun-Jin PARK
Neurospine 2024;21(4):1190-1198
Objective:
To compare the safety profiles of biportal endoscopic spinal surgery (BESS) and microscopic spinal surgery (MSS) for lumbar disc herniation and spinal stenosis by analyzing the associated adverse events.
Methods:
We pooled data from 2 prospective randomized controlled trials involving 220 patients (110 in each group) who underwent single-level lumbar surgery. Participants aged 20–80 years with radiating pain due to lumbar disc herniation or spinal stenosis were included in this study. Adverse events were recorded and analyzed over a 12-month follow-up period.
Results:
The overall adverse event rates were 9.1% (10 of 110) in the BESS group and 17.3% (19 of 110) in the MSS group, which were not statistically significantly different (p=0.133). Notably, wound dehiscence occurred in 8.2% of MSS cases but in none of the BESS cases. Both groups showed similarly low rates of complications, such as dural tears, epidural hematoma, and nerve root injury. The most common adverse event in the BESS group was recurrent disc herniation (2.7%), whereas that in the MSS group was wound dehiscence (8.2%).
Conclusion
BESS demonstrated a safety profile comparable to that of MSS for the treatment of lumbar disc herniation and spinal stenosis, with a trend towards fewer overall complications. BESS offers particular advantages in terms of reducing wound-related complications. These findings suggest that BESS is a safe alternative to conventional MSS and potentially offers the benefits of a minimally invasive approach without compromising patient safety.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.Safety Profile of Biportal Endoscopic Spine Surgery Compared to Conventional Microscopic Approach: A Pooled Analysis of 2 Randomized Controlled Trials
Sang-Min PARK ; Kwang-Sup SONG ; Dae-Woong HAM ; Ho-Joong KIM ; Min-Seok KANG ; Ki-Han YOU ; Choon Keun PARK ; Dong-Keun LEE ; Jin-Sung KIM ; Hong-Jae LEE ; Hyun-Jin PARK
Neurospine 2024;21(4):1190-1198
Objective:
To compare the safety profiles of biportal endoscopic spinal surgery (BESS) and microscopic spinal surgery (MSS) for lumbar disc herniation and spinal stenosis by analyzing the associated adverse events.
Methods:
We pooled data from 2 prospective randomized controlled trials involving 220 patients (110 in each group) who underwent single-level lumbar surgery. Participants aged 20–80 years with radiating pain due to lumbar disc herniation or spinal stenosis were included in this study. Adverse events were recorded and analyzed over a 12-month follow-up period.
Results:
The overall adverse event rates were 9.1% (10 of 110) in the BESS group and 17.3% (19 of 110) in the MSS group, which were not statistically significantly different (p=0.133). Notably, wound dehiscence occurred in 8.2% of MSS cases but in none of the BESS cases. Both groups showed similarly low rates of complications, such as dural tears, epidural hematoma, and nerve root injury. The most common adverse event in the BESS group was recurrent disc herniation (2.7%), whereas that in the MSS group was wound dehiscence (8.2%).
Conclusion
BESS demonstrated a safety profile comparable to that of MSS for the treatment of lumbar disc herniation and spinal stenosis, with a trend towards fewer overall complications. BESS offers particular advantages in terms of reducing wound-related complications. These findings suggest that BESS is a safe alternative to conventional MSS and potentially offers the benefits of a minimally invasive approach without compromising patient safety.
6.2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
Jun Sung MOON ; Shinae KANG ; Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; Yoon Ju SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Jaehyun BAE ; Eonju JEON ; Ji Min KIM ; Seon Mee KANG ; Jung Hwan PARK ; Jae-Seung YUN ; Bong-Soo CHA ; Min Kyong MOON ; Byung-Wan LEE
Diabetes & Metabolism Journal 2024;48(4):546-708
7.Identification of acute myocardial infarction and stroke events using the National Health Insurance Service database in Korea
Minsung CHO ; Hyeok-Hee LEE ; Jang-Hyun BAEK ; Kyu Sun YUM ; Min KIM ; Jang-Whan BAE ; Seung-Jun LEE ; Byeong-Keuk KIM ; Young Ah KIM ; JiHyun YANG ; Dong Wook KIM ; Young Dae KIM ; Haeyong PAK ; Kyung Won KIM ; Sohee PARK ; Seng Chan YOU ; Hokyou LEE ; Hyeon Chang KIM
Epidemiology and Health 2024;46(1):e2024001-
OBJECTIVES:
The escalating burden of cardiovascular disease (CVD) is a critical public health issue worldwide. CVD, especially acute myocardial infarction (AMI) and stroke, is the leading contributor to morbidity and mortality in Korea. We aimed to develop algorithms for identifying AMI and stroke events from the National Health Insurance Service (NHIS) database and validate these algorithms through medical record review.
METHODS:
We first established a concept and definition of “hospitalization episode,” taking into account the unique features of health claims-based NHIS database. We then developed first and recurrent event identification algorithms, separately for AMI and stroke, to determine whether each hospitalization episode represents a true incident case of AMI or stroke. Finally, we assessed our algorithms’ accuracy by calculating their positive predictive values (PPVs) based on medical records of algorithm- identified events.
RESULTS:
We developed identification algorithms for both AMI and stroke. To validate them, we conducted retrospective review of medical records for 3,140 algorithm-identified events (1,399 AMI and 1,741 stroke events) across 24 hospitals throughout Korea. The overall PPVs for the first and recurrent AMI events were around 92% and 78%, respectively, while those for the first and recurrent stroke events were around 88% and 81%, respectively.
CONCLUSIONS
We successfully developed algorithms for identifying AMI and stroke events. The algorithms demonstrated high accuracy, with PPVs of approximately 90% for first events and 80% for recurrent events. These findings indicate that our algorithms hold promise as an instrumental tool for the consistent and reliable production of national CVD statistics in Korea.
8.Mitral Annular Tissue Velocity Predicts Survival in Patients With Primary Mitral Regurgitation
You-Jung CHOI ; Chan Soon PARK ; Tae-Min RHEE ; Hyun-Jung LEE ; Hong-Mi CHOI ; In-Chang HWANG ; Jun-Bean PARK ; Yeonyee E. YOON ; Jin Oh NA ; Hyung-Kwan KIM ; Yong-Jin KIM ; Goo-Yeong CHO ; Dae-Won SOHN ; Seung-Pyo LEE
Korean Circulation Journal 2024;54(6):311-322
Background and Objectives:
Early diastolic mitral annular tissue (e’) velocity is a commonly used marker of left ventricular (LV) diastolic function. This study aimed to investigate the prognostic implications of e’ velocity in patients with mitral regurgitation (MR).
Methods:
This retrospective cohort study included 1,536 consecutive patients aged <65 years with moderate or severe chronic primary MR diagnosed between 2009 and 2018. The primary and secondary outcomes were all-cause and cardiovascular mortality, respectively.According to the current guidelines, the cut-off value of e’ velocity was defined as 7 cm/s.
Results:
A total of 404 individuals were enrolled (median age, 51.0 years; 64.1% male; 47.8% severe MR). During a median 6.0-year follow-up, there were 40 all-cause mortality and 16 cardiovascular deaths. Multivariate analysis revealed a significant association between e’ velocity and all-cause death (adjusted hazard ratio [aHR], 0.770; 95% confidence interval [CI], 0.634–0.935; p=0.008) and cardiovascular death (aHR, 0.690; 95% CI, 0.477–0.998;p=0.049). Abnormal e’ velocity (≤7 cm/s) independently predicted all-cause death (aHR, 2.467; 95% CI, 1.170–5.200; p=0.018) and cardiovascular death (aHR, 5.021; 95% CI, 1.189–21.211; p=0.028), regardless of symptoms, LV dimension and ejection fraction. Subgroup analysis according to sex, MR severity, mitral valve replacement/repair, and symptoms, showed no significant interactions. Including e’ velocity in the 10-year risk score improved reclassification for mortality (net reclassification improvement [NRI], 0.154; 95% CI, 0.308– 0.910; p<0.001) and cardiovascular death (NRI, 1.018; 95% CI, 0.680–1.356; p<0.001).
Conclusions
In patients aged <65 years with primary MR, e’ velocity served as an independent predictor of all-cause and cardiovascular deaths.
9.Safety Profile of Biportal Endoscopic Spine Surgery Compared to Conventional Microscopic Approach: A Pooled Analysis of 2 Randomized Controlled Trials
Sang-Min PARK ; Kwang-Sup SONG ; Dae-Woong HAM ; Ho-Joong KIM ; Min-Seok KANG ; Ki-Han YOU ; Choon Keun PARK ; Dong-Keun LEE ; Jin-Sung KIM ; Hong-Jae LEE ; Hyun-Jin PARK
Neurospine 2024;21(4):1190-1198
Objective:
To compare the safety profiles of biportal endoscopic spinal surgery (BESS) and microscopic spinal surgery (MSS) for lumbar disc herniation and spinal stenosis by analyzing the associated adverse events.
Methods:
We pooled data from 2 prospective randomized controlled trials involving 220 patients (110 in each group) who underwent single-level lumbar surgery. Participants aged 20–80 years with radiating pain due to lumbar disc herniation or spinal stenosis were included in this study. Adverse events were recorded and analyzed over a 12-month follow-up period.
Results:
The overall adverse event rates were 9.1% (10 of 110) in the BESS group and 17.3% (19 of 110) in the MSS group, which were not statistically significantly different (p=0.133). Notably, wound dehiscence occurred in 8.2% of MSS cases but in none of the BESS cases. Both groups showed similarly low rates of complications, such as dural tears, epidural hematoma, and nerve root injury. The most common adverse event in the BESS group was recurrent disc herniation (2.7%), whereas that in the MSS group was wound dehiscence (8.2%).
Conclusion
BESS demonstrated a safety profile comparable to that of MSS for the treatment of lumbar disc herniation and spinal stenosis, with a trend towards fewer overall complications. BESS offers particular advantages in terms of reducing wound-related complications. These findings suggest that BESS is a safe alternative to conventional MSS and potentially offers the benefits of a minimally invasive approach without compromising patient safety.
10.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.

Result Analysis
Print
Save
E-mail