1.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
2.Advances in Lung Cancer Treatment: Integrating Immunotherapy and Chinese Herbal Medicines to Enhance Immune Response.
Yu-Xin XU ; Lin CHEN ; Wen-da CHEN ; Jia-Xue FAN ; Ying-Ying REN ; Meng-Jiao ZHANG ; Yi-Min CHEN ; Pu WU ; Tian XIE ; Jian-Liang ZHOU
Chinese journal of integrative medicine 2025;31(9):856-864
3.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones
4.Development of multicolor photoelectroencephalography evoked flash for selection of naval aircraft pilots
Yong-Sheng CHEN ; Jing HUANG ; Da-Wei TIAN ; Fei YU ; Hui-Bian ZHANG ; Lin ZHANG ; Ying-Juan ZHENG ; Xiao-Quan ZHU
Chinese Medical Equipment Journal 2024;45(7):112-114
Objective To develop a multicolor photoelectroencephalography evoked flash to identify photosensitive epilepsy patients during the selection of naval aircraft pilots.Methods The multicolor photoelectroencephalography evoked flash was composed of a main body,a control box and a bracket.There were four rows of LED lights in the main body,which emitted four colors of light including red,yellow,green and orange,respectively;there were three sockets for signal,light and power and one color changeover switch on the body of the control box,and a control circuit board was fixed at the bottom inside the control box;the bracket had a double-jointed arm folding structure.The flash developed was compared with the coventional photoelectroencephalography evoked flash to verify its effect for inducing photosensitive epilepsy.Results There were no significant differences between the two flashes in the numbers of identified cases with photosensitive epilepsy when the subjects were under awake and closed-eye conditions(P>0.05).Condusion The flash developed can make up for the deficiency of the coventional photoelectroencephalography evoked flash when selecting naval aircraft pilots.[Chinese Medical Equipment Journal,2024,45(7):112-114]
5.Simulation study of musculoskeletal system of lower limbs based on synergistic effects of stress and electromagnetic fields
Ruo-Bing LIU ; Qi-Lin PEI ; Xi SHAO ; Dan WANG ; Yu-Lan TIAN ; Ze-Dong YAN ; Da JING
Chinese Medical Equipment Journal 2024;45(9):21-26
Objective To apply a COMSOL-based finite element analysis method to investigating the electric field effects produced by the human lower limb musculoskeletal system under the synergistic effects of stress field and electromagnetic field.Methods Firstly,a 3D human body model was constructed by Maxon Cinema 4D R21 software,and then imported into COMSOL 6.1 software in STL format.Secondly,an electromagnetic field intervention and stress loading model for the left lower limb of the human body was designed and constructed,in which 15 Hz quasi-pulse group current signals were used for electromagnetic field excitation and the stress field was realized by applying a vibration load with an average compressive force of about 90 N/cm2 to the left foot of the human body.Finally,the electromagnetic properties of human tissue were simulated by numerical simulation,and then the effects of stress field or elecromagnetic field or combined stress field and electromagnetic field on human bioelectric field were compared.Results Simulation results showed that the electric field intensity peaked at the leg joints under both electromagnetic and stress fields acting alone or synergistically,the bioelectric field intensity generated by the human body was related to the distance from the exogenous excitation loading location,and the electric field generated under synergistic action was equivalent to the linear superposition of the bioelectric field in the tissue induced by the electromagnetic field and the stress field acting alone.Conclusion Data supplement is provided for predicting bioelectric field changes within the musculoskeletal tissue,and theoretical foundation is laid for the development and application of multi-physics field synergistic intervention therapy for treating the disorders of the lower limb musculos-keletal system.[Chinese Medical Equipment Journal,2024,45(9):21-26]
6.Design of GIS-based 3D playback system for flight human-plane data
La-Mei SHANG ; Yu-Fei QIN ; Wen WANG ; Wan-Qi LI ; Da-Long GUO ; Xiao-Chao GUO ; Juan LIU ; Zhen TIAN ; Ting-Ting CUI ; Yu-Bin ZHOU
Chinese Medical Equipment Journal 2024;45(10):14-19
Objective To develop a GIS-based 3D playback system for the flight human-plane data to realize the fusion of pilots'airborne flight data and physiological data.Methods The 3D playback system was developed with the Browser/Server(B/S)architecture,micro-server model,Java language and Spring Cloud technology framework,which was composed of three functional modules for flight process reproduction,physiological situational awareness and critical event calibration analysis.Results The system developed achieved time synchronization and data fusion of airborne flight data and physiological data with a time synchronization frequency of 1 Hz and a refresh rate of not less than 120 frames/s.Conclusion The system developed with high safety,stability,reliability and accuracy facilitates pilot in-flight physiological monitoring and fusion and simultaneous display of airborne flight data and physiological data,which can be used as an important platform for decision-making support in flight training.[Chinese Medical Equipment Journal,2024,45(10):14-19]
7.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Long-term therapeutic efficacy and prognosis analysis of complex high-risk coronary heart disease patients undergoing elective percutaneous coronary intervention with extracorporeal membrane oxygenation combined with intra-aortic balloon pump
Tian-Tong YU ; Shuai ZHAO ; Yan CHEN ; You-Hu CHEN ; Gen-Rui CHEN ; Huan WANG ; Bo-Hui ZHANG ; Xi ZHANG ; Bo-Da ZHU ; Peng HAN ; Hao-Kao GAO ; Kun LIAN ; Cheng-Xiang LI
Chinese Journal of Interventional Cardiology 2024;32(9):501-508
Objective We aimed to compare the efficacy and prognosis of percutaneous coronary intervention(PCI)in complex and high-risk patients with coronary heart disease(CHD)treated with extracorporeal membrane oxygenation(ECMO)combined with intra-aortic balloon pump(IABP)assistance,and explore the application value of combined use of mechanical circulatory support(MCS)devices in complex PCI.Methods A total of patients who met the inclusion criteria and underwent selective PCI supported by MCS at the Department of Cardiology,the First Affiliated Hospital of the Air Force Medical University from January 2018 to December 2022 were continuously enrolled.According to the mechanical circulatory support method,the patients were divided into ECMO+IABP group and IABP group.Clinical characteristics,angiographic features,in-hospital outcomes,and complications were collected.The intra-hospital outcomes and major adverse cardiovascular events(MACE)at one month and one year after the procedure were observed.The differences and independent risk factors between the two groups in the above indicators were analyzed.Results A total of 218 patients undergoing elective PCI were included,of which 66 patients were in the ECMO+IABP group and 152 patients were in the IABP group.The baseline characteristics of the two groups of patients were generally comparable,but the ECMO+IABP group had more complex lesion characteristics.The proportion of patients with atrial fibrillation(6.1%vs.0.7%,P=0.030),left main disease(43.9%vs.27.0%,P=0.018),triple vessel disease(90.9%vs.75.5%,P=0.009),and RCA chronic total occlusion disease(60.6%vs.35.5%,P<0.001)was higher in the ECMO+IABP group compared to the IABP group.The proportion of patients with previous PCI history was higher in the IABP group(32.9%vs.16.7%,P=0.014).There was no statistically significant difference in the incidence of in-hospital complications between the two groups(P=0.176),but the incidence of hypotension after PCI was higher in the ECMO+IABP group(19.7%vs.9.2%,P=0.031).The rates of 1-month MACE(4.5%vs.2.6%,P=0.435)and 1-year MACE(7.6%vs.7.9%,P=0.936)were comparable between the two groups.Multivariate analysis showed that in-hospital cardiac arrest(OR 7.17,95%CI 1.27-40.38,P=0.025)and after procedure hypotension(OR 3.60,95%CI 1.10-11.83,P=0.035)were independent risk factors for the occurrence of 1-year MACE.Conclusions Combination use of ECMO+IABP support can provide complex and high-risk coronary heart disease patients with an opportunity to achieve coronary artery revascularization through PCI,and achieve satisfactory long-term prognosis.
10.Porcine SIRT5 promotes replication of foot and mouth disease virus type O in PK-15 cells
Guo-Hui CHEN ; Xi-Juan SHI ; Xin-Tian BIE ; Xing YANG ; Si-Yue ZHAO ; Da-Jun ZHANG ; Deng-Shuai ZHAO ; Wen-Qian YAN ; Ling-Ling CHEN ; Mei-Yu ZHAO ; Lu HE ; Hai-Xue ZHENG ; Xia LIU ; Ke-Shan ZHANG
Chinese Journal of Zoonoses 2024;40(5):421-429
The effect of porcine SIRT5 on replication of foot and mouth disease virus type O(FMDV-O)and the underlying regulatory mechanism were investigated.Western blot and RT-qPCR analyses were employed to monitor expression of endoge-nous SIRT5 in PK-15 cells infected with FMDV-O.Three pairs of SIRT5-specific siRNAs were synthesized.Changes to SIRT5 and FMDV-O protein and transcript levels,in addition to virus copy numbers,were measured by western blot and RT-qPCR analyses.PK-15 cells were transfected with a eukaryotic SIRT5 expression plasmid.Western blot and RT-qPCR analyses were used to explore the impact of SIRT5 overexpression on FMDV-O replication.Meanwhile,RT-qPCR analysis was used to detect the effect of SIRT5 overexpression on the mRNA expression levels of type I interferon-stimulated genes induced by SeV and FMDV-O.The results showed that expression of SIRT5 was up-regulated in PK-15 cells infected with FMDV-O and siRNA interfered with SIRT5 to inhibit FMDV-O replication.SIRT5 overexpression promoted FMDV-O replication.SIRT5 over-expression decreased mRNA expression levels of interferon-stimulated genes induced by SeV and FMDV-O.These results suggest that FMDV-O infection stimulated expression of SIRT5 in PK-15 cells,while SIRT5 promoted FMDV-O rep-lication by inhibiting production of type I interferon-stimula-ted genes.These findings provide a reference to further ex-plore the mechanism underlying the ability of porcine SIRT5 to promote FMDV-O replication.

Result Analysis
Print
Save
E-mail