1.Prevalence and risk factors of training-related abdominal injuries: A multicenter survey study.
Chuan PANG ; Wen-Quan LIANG ; Gan ZHANG ; Ting-Ting LU ; Yun-He GAO ; Xin MIAO ; Zhi-Da CHEN ; Yi LIU ; Wen-Tong XU ; Hong-Qing XI
Chinese Journal of Traumatology 2025;28(4):301-306
PURPOSE:
This study aims to identify the prevalence and risk factors of military training-related abdominal injuries and help plan and conduct training properly.
METHODS:
This questionnaire survey study was conducted from October 2021 to May 2022 among military personnel from 6 military units and 8 military medical centers and participants' medical records were consulted to identify the training-related abdominal injuries. All the military personnel who ever participated in military training were included. Those who refused to participate in this study or provided an incomplete questionnaire were excluded. The questionnaire collected demographic information, type of abdominal injury, frequency, training subjects, triggers, treatment, and training disturbance. Chi-square test and t-test were used to compare baseline information. Univariate and multivariate regression analyses were used to explore the risk factors associated with military training-related abdominal injuries.
RESULTS:
A total of 3058 participants were involved in this study, among which 1797 (58.8%) had suffered training-related abdominal injuries (the mean age was 24.3 years and the service time was 5.6 years), while 1261 (41.2%) had no training-related abdominal injuries (the mean age was 23.1 years and the service time was 4.3 years). There were 546 injured patients (30.4%) suspended the training and 84 (4.6%) needed to be referred to higher-level hospitals. The most common triggers included inadequate warm-up, fatigue, and intense training. The training subjects with the most abdominal injuries were long-distance running (589, 32.8%). Civil servants had the highest rate of abdominal trauma (17.1%). Age ≥ 25 years, military service ≥ 3 years, poor sleep status, and previous abdominal history were independent risk factors for training-related abdominal injury.
CONCLUSION
More than half of the military personnel have suffered military training-related abdominal injuries. Inadequate warm-up, fatigue, and high training intensity are the most common inducing factors. Scientific and proper training should be conducted according to the factors causing abdominal injuries.
Humans
;
Military Personnel
;
Risk Factors
;
Prevalence
;
Male
;
Abdominal Injuries/etiology*
;
Female
;
Adult
;
Surveys and Questionnaires
;
Young Adult
2.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
3.Co-Circulation of Respiratory Pathogens that Cause Severe Acute Respiratory Infections during the Autumn and Winter of 2023 in Beijing, China.
Jing Zhi LI ; Da HUO ; Dai Tao ZHANG ; Jia Chen ZHAO ; Chun Na MA ; Dan WU ; Peng YANG ; Quan Yi WANG ; Zhao Min FENG
Biomedical and Environmental Sciences 2025;38(5):644-648
4.Development of multicolor photoelectroencephalography evoked flash for selection of naval aircraft pilots
Yong-Sheng CHEN ; Jing HUANG ; Da-Wei TIAN ; Fei YU ; Hui-Bian ZHANG ; Lin ZHANG ; Ying-Juan ZHENG ; Xiao-Quan ZHU
Chinese Medical Equipment Journal 2024;45(7):112-114
Objective To develop a multicolor photoelectroencephalography evoked flash to identify photosensitive epilepsy patients during the selection of naval aircraft pilots.Methods The multicolor photoelectroencephalography evoked flash was composed of a main body,a control box and a bracket.There were four rows of LED lights in the main body,which emitted four colors of light including red,yellow,green and orange,respectively;there were three sockets for signal,light and power and one color changeover switch on the body of the control box,and a control circuit board was fixed at the bottom inside the control box;the bracket had a double-jointed arm folding structure.The flash developed was compared with the coventional photoelectroencephalography evoked flash to verify its effect for inducing photosensitive epilepsy.Results There were no significant differences between the two flashes in the numbers of identified cases with photosensitive epilepsy when the subjects were under awake and closed-eye conditions(P>0.05).Condusion The flash developed can make up for the deficiency of the coventional photoelectroencephalography evoked flash when selecting naval aircraft pilots.[Chinese Medical Equipment Journal,2024,45(7):112-114]
5.Platinum-based polypyrrole is used in oxygen-enhanced photodynamic therapy
Yue ZHANG ; Han-yue LI ; Wei-jian ZENG ; Lin MEI ; Da-quan CHEN
Acta Pharmaceutica Sinica 2024;59(7):2153-2160
Photodynamic therapy is an emerging cancer therapy with clinical prospects, which plays a specific role in the tumor site and causes less harm to the human body. However, the toxicity of small molecules of hydrophobic photosensitizer, the tumor hypoxia microenvironment, and the biodegradability of nano-carrier systems affect its antitumor efficacy and metabolic clearance
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Percutaneous balloon mitral valvuloplasty guided by intracardiac echocardiography:a report of two cases
De-Jian LI ; Song CHEN ; Chao XU ; Xue JIANG ; Bo WANG ; Jian-Fei FENG ; Dong-Bang SONG ; Guo-Hui ZHANG ; Ming-Quan WANG ; Wei-Min WANG ; Da-Dong ZHANG
Chinese Journal of Interventional Cardiology 2024;32(5):295-297
For the past 30 years,percutaneous balloon mitral valve dilatation has been performed under the guidance of X-rays and bedside ultrasound.However,there are still some cases of mitral valve stenosis in the large atrium where balloon dilation failed.Intraperitoneal ultrasound-guided percutaneous balloon mitral valve plasty is accurate and feasible,which can reduce the occurrence of complications and improve the success rate of such elderly complex cases.Two patients with severe mitral stenosis underwent percutaneous balloon mitral valve plasty guided by intracardiac ultrasound.The operations were successful without any complications,which can provide reference for clinical treatment of mitral stenosis.
8.Formation of professor Mao Xiejun's thoughts on stomatological education.
Yan Hua SHAN ; Qi CHEN ; Quan JING ; Da Qing ZHANG ; Yong Sheng ZHOU
Chinese Journal of Stomatology 2023;58(2):174-179
Professor Mao Xiejun wrote a report about dental education of China in 1935. From 1948 to 1950, he published three articles containing the educational idea of "developing dentistry into stomatology". When he served as the director of the Faculty of Dentistry of Peking University Medical School in July 1950, he proposed to rename the Faculty of Dentistry into the Faculty of Stomatology,which were approved by the Ministry of Health and the Ministry of Education of the People's Republic of China in one month. The Chinese Medical Association established the Society of Stomatology the next year. Later, dentistry was successively changed into stomatology, and medical content was integrated into dental education, which was of great significance and far-reaching influence. During the developments of the thought of stomatological education in China, Professor Mao Xiejun evidently played a pivotal role. In this paper, the formation process of the thoughts of stomatological education related to professor Mao Xiejun's contribution is elucidated through studying the archives, personal letters, and historical documents, so as to enrich the researches on the history of stomatology in China and to facilitate better understanding and promoting the development of stomatology.
Humans
;
Oral Medicine/education*
;
Education, Dental
;
China
;
Universities
9.Moving Epidemic Method for Surveillance and Early Warning of Hand, Foot, and Mouth Disease in Beijing, China.
Shuai Bing DONG ; Yu WANG ; Da HUO ; Hao ZHAO ; Bai Wei LIU ; Ren Qing LI ; Zhi Yong GAO ; Xiao Li WANG ; Dai Tao ZHANG ; Quan Yi WANG ; Lei JIA ; Peng YANG
Biomedical and Environmental Sciences 2023;36(12):1162-1166
10.HbA1c comparison and diagnostic efficacy analysis of multi center different glycosylated hemoglobin detection systems.
Ping LI ; Ying WU ; Yan XIE ; Feng CHEN ; Shao qiang CHEN ; Yun Hao LI ; Qing Qing LU ; Jing LI ; Yong Wei LI ; Dong Xu PEI ; Ya Jun CHEN ; Hui CHEN ; Yan LI ; Wei WANG ; Hai WANG ; He Tao YU ; Zhu BA ; De CHENG ; Le Ping NING ; Chang Liang LUO ; Xiao Song QIN ; Jin ZHANG ; Ning WU ; Hui Jun XIE ; Jina Hua PAN ; Jian SHUI ; Jian WANG ; Jun Ping YANG ; Xing Hui LIU ; Feng Xia XU ; Lei YANG ; Li Yi HU ; Qun ZHANG ; Biao LI ; Qing Lin LIU ; Man ZHANG ; Shou Jun SHEN ; Min Min JIANG ; Yong WU ; Jin Wei HU ; Shuang Quan LIU ; Da Yong GU ; Xiao Bing XIE
Chinese Journal of Preventive Medicine 2023;57(7):1047-1058
Objective: Compare and analyze the results of the domestic Lanyi AH600 glycated hemoglobin analyzer and other different detection systems to understand the comparability of the detection results of different detectors, and establish the best cut point of Lanyi AH600 determination of haemoglobin A1c (HbA1c) in the diagnosis of diabetes. Methods: Multi center cohort study was adopted. The clinical laboratory departments of 18 medical institutions independently collected test samples from their respective hospitals from March to April 2022, and independently completed comparative analysis of the evaluated instrument (Lanyi AH600) and the reference instrument HbA1c. The reference instruments include four different brands of glycosylated hemoglobin meters, including Arkray, Bio-Rad, DOSOH, and Huizhong. Scatter plot was used to calculate the correlation between the results of different detection systems, and the regression equation was calculated. The consistency analysis between the results of different detection systems was evaluated by Bland Altman method. Consistency judgment principles: (1) When the 95% limits of agreement (95% LoA) of the measurement difference was within 0.4% HbA1c and the measurement score was≥80 points, the comparison consistency was good; (2) When the measurement difference of 95% LoA exceeded 0.4% HbA1c, and the measurement score was≥80 points, the comparison consistency was relatively good; (3) The measurement score was less than 80 points, the comparison consistency was poor. The difference between the results of different detection systems was tested by paired sample T test or Wilcoxon paired sign rank sum test; The best cut-off point of diabetes was analyzed by receiver operating characteristic curve (ROC). Results: The correlation coefficient R2 of results between Lanyi AH600 and the reference instrument in 16 hospitals is≥0.99; The Bland Altman consistency analysis showed that the difference of 95% LoA in Nanjing Maternity and Child Health Care Hospital in Jiangsu Province (reference instrument: Arkray HA8180) was -0.486%-0.325%, and the measurement score was 94.6 points (473/500); The difference of 95% LoA in the Tibetan Traditional Medical Hospital of TAR (reference instrument: Bio-Rad Variant II) was -0.727%-0.612%, and the measurement score was 89.8 points; The difference of 95% LoA in the People's Hospital of Chongqing Liang Jiang New Area (reference instrument: Huizhong MQ-2000PT) was -0.231%-0.461%, and the measurement score was 96.6 points; The difference of 95% LoA in the Taihe Hospital of traditional Chinese Medicine in Anhui Province (reference instrument: Huizhong MQ-2000PT) was -0.469%-0.479%, and the measurement score was 91.9 points. The other 14 hospitals, Lanyi AH600, were compared with 4 reference instrument brands, the difference of 95% LoA was less than 0.4% HbA1c, and the scores were all greater than 95 points. The results of paired sample T test or Wilcoxon paired sign rank sum test showed that there was no statistically significant difference between Lanyi AH600 and the reference instrument Arkray HA8180 (Z=1.665,P=0.096), with no statistical difference. The mean difference between the measured values of the two instruments was 0.004%. The comparison data of Lanyi AH600 and the reference instrument of all other institutions had significant differences (all P<0.001), however, it was necessary to consider whether it was within the clinical acceptable range in combination with the results of the Bland-Altman consistency analysis. The ROC curve of HbA1c detected by Lanyi AH600 in 985 patients with diabetes and 3 423 patients with non-diabetes was analyzed, the area under curve (AUC) was 0.877, the standard error was 0.007, and the 95% confidence interval 95%CI was (0.864, 0.891), which was statistically significant (P<0.001). The maximum value of Youden index was 0.634, and the corresponding HbA1c cut point was 6.235%. The sensitivity and specificity of diabetes diagnosis were 76.2% and 87.2%, respectively. Conclusion: Among the hospitals and instruments currently included in this study, among these four hospitals included Nanjing Maternity and Child Health Care Hospital in Jiangsu Province (reference instrument: Arkray HA8180), Tibetan Traditional Medical Hospital of TAR (reference instrument: Bio-Rad Variant Ⅱ), the People's Hospital of Chongqing Liang Jiang New Area (reference instrument: Huizhong MQ-2000PT), and the Taihe Hospital of traditional Chinese Medicine in Anhui Province (reference instrument: Huizhong MQ-2000PT), the comparison between Lanyi AH600 and the reference instruments showed relatively good consistency, while the other 14 hospitals involved four different brands of reference instruments: Arkray, Bio-Rad, DOSOH, and Huizhong, Lanyi AH600 had good consistency with its comparison. The best cut point of the domestic Lanyi AH600 for detecting HbA1c in the diagnosis of diabetes is 6.235%.
Pregnancy
;
Child
;
Humans
;
Female
;
Glycated Hemoglobin
;
Cohort Studies
;
Diabetes Mellitus/diagnosis*
;
Sensitivity and Specificity
;
ROC Curve

Result Analysis
Print
Save
E-mail