4.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
5.A new cephalotaxine-type alkaloid dimer from Cephalotaxus lanceolata.
Jia-Yang MA ; Jing WANG ; Sha CHEN ; Chun-Lei YUAN ; Jin-Yuan YANG ; Da-Hong LI ; Hui-Ming HUA
China Journal of Chinese Materia Medica 2025;50(13):3729-3741
The chemical constituents from Cephalotaxus lanceolata were isolated and purified by using multiple chromatographic techniques, including octadecylsilane(ODS), silica gel, Sephadex LH-20 column chromatography, and semi-preparative high-performance liquid chromatography(HPLC). A total of 17 compounds obtained were identified by using spectroscopic methods such as nuclear magnetic resonance(NMR), mass spectrometry(MS), and ultraviolet(UV) combined with literature data. Compound 1 was a new alkaloid dimer, named cephalancetine E. The known compounds were determined as cephalancetine A(2), 11-hydroxycephalotaxine(3), 4-hydroxycephalotaxine(4), cephalotaxine(5), epicephalotaxine(6), cephalotaxine β-N-oxide(7), acetylcephalotaxine(8), cephalotine A(9), cephalotine B(10), 11-hydroxycephalotaxine hemiketal(11), 3-deoxy-3,11-epoxy-cephalotaxine(12), cephalotaxinone(13), isocephalotaxinone(14), 2,11-epoxy-1,2-dihydro-8-oxo-cephalotaxine(15), cephalotaxamide(16), and drupacine(17), respectively. Compounds 11, 12, and 15 were isolated from the Cephalotaxus genus for the first time. The biological activity was tested for compounds 1-17. The results reveal that compound 17 displays potent inhibitory activities against three human cancer cell lines(HepG-2, MCF-7, and SH-SY5Y).
Cephalotaxus/chemistry*
;
Humans
;
Cell Line, Tumor
;
Drugs, Chinese Herbal/pharmacology*
;
Harringtonines/pharmacology*
;
Molecular Structure
;
Dimerization
;
Alkaloids/isolation & purification*
;
Magnetic Resonance Spectroscopy
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Effect of ureteral wall thickness at the site of ureteral stones on the clinical efficacy of ureteroscopic lithotripsy
Wei PU ; Jian JI ; Zhi-Da WU ; Ya-Fei WANG ; Tian-Can YANG ; Lyu-Yang CHEN ; Qing-Peng CUI ; Xu XU ; Xiao-Lei SUN ; Yuan-Quan ZHU ; Shi-Cheng FAN
Journal of Regional Anatomy and Operative Surgery 2024;33(12):1077-1081
Objective To investigate the effect of varying ureteral wall thickness(UWT)at the site of ureteral stones on the clinical efficacy of ureteroscopic lithotripsy(URL).Methods The clinical data of 164 patients with ureteral stones in our hospital were retrospectively analyzed.According to different UWT,the patients were divided into the mild thickening group(84 cases,UWT<3.16 mm),the moderate thickening group(31 cases,UWT 3.16 to 3.49 mm),and the severe thickening group(49 cases,UWT>3.49 mm),and the differences of clinical related indicators among the three groups were compared.Results The incidence of postoperative renal colic and leukocyte disorder in the mild thickening group and the moderate thickening group were lower than those in the severe thickening group,and the differences were statistically significant(P<0.05).The postoperative catheterization time in the mild thickening group and the moderate thickening group were shorter than that in the severe thickening group,and the incidences of secondary lithotripsy,residual stones and stone return to kidney in the mild thickening group and the moderate thickening group were lower than those in the severe thickening group,with statistically significant differences(P<0.05).The length of hospital stay and hospitalization cost in the mild thickening group and the moderate thickening group were shorter/less than those in the severe thickening group,with statistically significant differences(P<0.05).Conclusion With the increase of UWT(especially when UWT>3.49 mm),the incidence of postoperative complications and hospitalization cost of URL increase to varying degrees,and the surgical efficacy decreases.In clinical work,UWT measurement holds potential value in predicting the surgical efficacy and complications of URL.
8.Moving Epidemic Method for Surveillance and Early Warning of Hand, Foot, and Mouth Disease in Beijing, China.
Shuai Bing DONG ; Yu WANG ; Da HUO ; Hao ZHAO ; Bai Wei LIU ; Ren Qing LI ; Zhi Yong GAO ; Xiao Li WANG ; Dai Tao ZHANG ; Quan Yi WANG ; Lei JIA ; Peng YANG
Biomedical and Environmental Sciences 2023;36(12):1162-1166
9.Benefits of Mindfulness Training on the Mental Health of Women During Pregnancy and Early Motherhood: A Randomized Controlled Trial.
Shu Lei WANG ; Meng Yun SUN ; Xing HUANG ; Da Ming ZHANG ; Li YANG ; Tao XU ; Xiao Ping PAN ; Rui Min ZHENG
Biomedical and Environmental Sciences 2023;36(4):353-366
OBJECTIVE:
This study aimed to evaluate the effects of a mindfulness-based psychosomatic intervention on depression, anxiety, fear of childbirth (FOC), and life satisfaction of pregnant women in China.
METHODS:
Women experiencing first-time pregnancy ( n = 104) were randomly allocated to the intervention group or a parallel active control group. We collected data at baseline (T0), post-intervention (T1), 3 days after delivery (T2), and 42 days after delivery (T3). The participants completed questionnaires for the assessment of the levels of depression, anxiety, FOC, life satisfaction, and mindfulness. Differences between the two groups and changes within the same group were analyzed at four time points using repeated-measures analysis of variance.
RESULTS:
Compared with the active control group, the intervention group reported lower depression levels at T2 ( P = 0.038) and T3 ( P = 0.013); reduced anxiety at T1 ( P = 0.001) and T2 ( P = 0.003); reduced FOC at T1 ( P < 0.001) and T2 ( P = 0.04); increased life satisfaction at T1 ( P < 0.001) and T3 ( P = 0.015); and increased mindfulness at T1 ( P = 0.01) and T2 ( P = 0.006).
CONCLUSION
The mindfulness-based psychosomatic intervention effectively increased life satisfaction and reduced perinatal depression, anxiety, and FOC.
Humans
;
Pregnancy
;
Female
;
Mental Health
;
Mindfulness
;
Pregnant Women/psychology*
;
Anxiety/prevention & control*
;
China
;
Depression/prevention & control*
10.Metagenomic Analysis of Environmental Samples from Wildlife Rescue Station at Poyang Lake, China.
Jia LIU ; Xi Yan LI ; Wen Tao SONG ; Xiao Xu ZENG ; Hui LI ; Lei YANG ; Da Yan WANG
Biomedical and Environmental Sciences 2023;36(7):595-603
OBJECTIVE:
To improve the understanding of the virome and bacterial microbiome in the wildlife rescue station of Poyang Lake, China.
METHODS:
Ten smear samples were collected in March 2019. Metagenomic sequencing was performed to delineate bacterial and viral diversity. Taxonomic analysis was performed using the Kraken2 and Bracken methods. A maximum-likelihood tree was constructed based on the RNA-dependent RNA polymerase (RdRp) region of picornavirus.
RESULTS:
We identified 363 bacterial and 6 viral families. A significant difference in microbial and viral abundance was found between samples S01-S09 and S10. In S01-S09, members of Flavobacteriia and Gammaproteobacteria were the most prevalent, while in S10, the most prevalent bacteria class was Actinomycetia. Among S01-S09, members of Myoviridae and Herelleviridae were the most prevalent, while the dominant virus family of S10 was Picornaviridae. The full genome of the pigeon mesivirus-like virus (NC-BM-233) was recovered from S10 and contained an open reading frame of 8,124 nt. It showed the best hit to the pigeon mesivirus 2 polyprotein, with 84.10% amino acid identity. Phylogenetic analysis showed that RdRp clustered into Megrivirus B.
CONCLUSION
This study provides an initial assessment of the bacteria and viruses in the cage-smeared samples, broadens our knowledge of viral and bacterial diversity, and is a way to discover potential pathogens in wild birds.
Animals
;
Animals, Wild/genetics*
;
Lakes
;
Phylogeny
;
Picornaviridae/genetics*
;
Viruses/genetics*
;
China
;
Metagenomics
;
Genome, Viral

Result Analysis
Print
Save
E-mail