1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
3.Traumatic cervical tracheal trunk complete rupture combined with cardiac arrest: A case report.
Cheng YANG ; Da-Liang WANG ; Yang-Lin DU ; Qiang-Fei WANG ; Yuan SUO ; Hui-Jie YU
Chinese Journal of Traumatology 2025;28(5):378-381
Traumatic main bronchus rupture is a relatively rare injury in thoracic trauma, which is extremely critical, with a mortality rate as high as 70% - 80%. The complete rupture and displacement of the traumatic cervical trachea can lead to asphyxia, hypoxia, and cardiac arrest, even death of the patient in a short time. We performed emergency surgery with the support of extracorporeal membrane oxygenation for a case of traumatic cervical tracheal trunk complete rupture and displacement combined with cardiac arrest and achieved a successful rescue. We summarized our experience and found that timely surgical reconstruction of the airway is the key to increasing the traumatic main bronchus rupture survival of patients.
Humans
;
Extracorporeal Membrane Oxygenation
;
Heart Arrest/etiology*
;
Rupture
;
Trachea/surgery*
4.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
5.In Situ Labeling of Erythrocyte Membrane Anion Channel Proteins with Gold Nanoparticles Observed by Cryo-Scanning Electron Microscopy
Si-Hang CHENG ; Hui-Li WANG ; Yang YU ; Jin-Rui ZHANG ; Hong-Da WANG
Chinese Journal of Analytical Chemistry 2024;52(1):54-61
Band 3 protein is an important channel protein in the erythrocyte membrane which mediates the anion transport process inside and outside the cell membrane,as well as contributes to the maintenance of erythrocyte morphology,and has important physiological functions.However,the distribution state of this protein in the primary cell membrane is not known.Cryo-scanning electron microscopy enables imaging of the surface morphology of biological samples in a near-physiological state.In order to investigate the distribution of band 3 protein on erythrocyte membranes under physiological conditions,the present study utilized 5-nm gold nanoparticles modified with the antibodies to specifically bind to the band 3 protein on human blood erythrocyte membranes and imaged them by cryo-scanning electron microscopy,to obtain distribution of band 3 protein on human blood erythrocyte membranes.The results showed that the membrane proteins on the erythrocyte membranes tended to be clustered and distributed to form ″protein islands″,and band 3 proteins were mainly distributed in these protein islands,which were tightly connected with each other to form several functional microregions to play their respective roles.
6.Reconstruction of Allen's type IV fingertip amputation via bilateral unequal-sized hallux osteo-onychocutaneous free flaps: A retrospective study with 5-year follow-up
Xiu-Zhong LI ; Xiu-Yun WANG ; Yi-Min ZHOU ; Da-Zhi YU ; Hua-Gang ZHANG ; Shu-Jian HOU ; Ke-Cheng LAO ; Xiao FAN
Chinese Journal of Traumatology 2024;27(6):403-409
Purpose::The reconstruction of Allen's type IV fingertip amputation is a clinical challenge. Our team designed bilateral unequal-sized hallux osteo-onychocutaneous free flaps for the long-term reconstruction of Allen's type IV fingertip amputation and conducted a retrospective study with a 5-year follow-up aims to evaluate the effects of this technique.Methods::A retrospective analysis with a 5-year follow-up including 13 patients with Allen's type IV fingertip amputation who were admitted to our hospital from January 2010 to January 2017 was conducted. The patients were treated with bilateral unequal-sized hallux osteo-onychocutaneous free flaps. The operation time, intraoperative blood loss, and complications were recorded, and the survival rate of the transplanted flaps was calculated. During the 5-year follow-up after operation, the nail growth time was recorded and the finger appearance was observed. At the last follow-up appointment, the length, width, and girth of the reconstructed fingertip and contralateral normal fingertip, range of motion of the reconstructed fingertip and contralateral normal fingertip, Semmes-Weinstein test (for the evaluation of tactile sensation), and two-point discrimination testing results were recorded. SPSS 22.0 software was used for the statistical analysis and the data are presented as mean ± SD.Results::The mean operation time was (5.62 ± 0.51) h, the mean intraoperative blood loss was (34.15 ± 3.13) mL, and the survival rate of the transplanted flaps was 100%. During the 5-year follow-up, the average nail growth time was (10.14 ± 1.98) months and the average bone union time was (3.78 ± 0.91) months. The length, width, and girth of the reconstructed fingertip were (31.52 ± 3.73) mm, (17.82 ± 1.74) mm, and (59.75 ± 3.04) mm, respectively, which did not differ from those of the contralateral normal fingertip. The range of motion of the reconstructed fingertip was (12.15 ± 2.79) degrees which is different from that of the contralateral normal fingertip. The average tactile sensation evaluated via the Semmes-Weinstein test and the average two-point discrimination test of the reconstructed fingertip were (0.39 ± 0.17) g and (7.46 ± 1.14) mm, respectively, which were not different from those of the contralateral normal fingertip. The average Maryland score of feet in the donor area was 87.66 ± 7.39, which was satisfactory.Conclusion::Bilateral unequal-sized hallux osteo-onychocutaneous free flaps are an effective method to reconstruct Allen's type IV fingertip amputations with a satisfactory appearance and good sensory function.
7.Diagnostic Value of Micropure Imaging Combined with Strain Elastography in Correcting Artificial Intelligence S-Detect Technology for Benign and Malignant Breast Complex Cystic and Solid Masses
Jie YUAN ; Cheng WANG ; Yingfen DA
Chinese Journal of Medical Instrumentation 2024;48(4):426-429,439
Objective To explore the diagnostic value of micropure imaging(MI)combined with strain elastography(SE)in correcting artificial intelligence(AI)S-Detect technology for benign and malignant breast complex cystic and solid masses.Methods The S-Detect diagnosis results were corrected based on the manifestations of MI and SE of the 145 breast complex cystic and solid masses.Postoperative pathological results were used as the gold standard to calculate the diagnostic sensitivity,specificity,and accuracy before and after correction.Additionally,receiver operating characteristic(ROC)curves were drawn for both groups,and the areas under the curves were compared.Results There were 80 benign and 65 malignant pathological results.After the correction of S-Detect,the diagnostic sensitivity,specificity,and accuracy,as well as the areas under the ROC curves,were all improved compared to before the correction.Conclusion Combining MI and SE to correct the diagnostic results of S-Detect can help improve the diagnostic efficacy of breast complex cystic and solid masses.
8.Synthesis and antimicrobial activity of sulfonamide derivatives of spectinomycin
Yong-qing LI ; Li FAN ; Wei WANG ; Hong-lin ZHU ; Jun-hong WEI ; Da-cheng YANG
Acta Pharmaceutica Sinica 2024;59(5):1313-1326
Microsporidia is a group of intracellular parasitic eukaryotic microorganisms that pose threats to livestock fish production and human health, but there is no special chemo-therapeutic drug available for the treatment of microsporidia currently. In this study, sulfonamide derivatives of spectinomycin were designed by taking into consideration the low toxicity of spectinomycin and the favorable pharmaceutical properties of sulfonamides. Through the exploration of reaction conditions, a total of 21 target molecules were synthesized with a yield of 52%-74% and their chemical structures were confirmed by 1H NMR, 13C NMR, and high resolution mass spectrometry (HR MS). By screening
9.Application and Challenges of EEG Signals in Fatigue Driving Detection
Shao-Jie ZONG ; Fang DONG ; Yong-Xin CHENG ; Da-Hua YU ; Kai YUAN ; Juan WANG ; Yu-Xin MA ; Fei ZHANG
Progress in Biochemistry and Biophysics 2024;51(7):1645-1669
People frequently struggle to juggle their work, family, and social life in today’s fast-paced environment, which can leave them exhausted and worn out. The development of technologies for detecting fatigue while driving is an important field of research since driving when fatigued poses concerns to road safety. In order to throw light on the most recent advancements in this field of research, this paper provides an extensive review of fatigue driving detection approaches based on electroencephalography (EEG) data. The process of fatigue driving detection based on EEG signals encompasses signal acquisition, preprocessing, feature extraction, and classification. Each step plays a crucial role in accurately identifying driver fatigue. In this review, we delve into the signal acquisition techniques, including the use of portable EEG devices worn on the scalp that capture brain signals in real-time. Preprocessing techniques, such as artifact removal, filtering, and segmentation, are explored to ensure that the extracted EEG signals are of high quality and suitable for subsequent analysis. A crucial stage in the fatigue driving detection process is feature extraction, which entails taking pertinent data out of the EEG signals and using it to distinguish between tired and non-fatigued states. We give a thorough rundown of several feature extraction techniques, such as topology features, frequency-domain analysis, and time-domain analysis. Techniques for frequency-domain analysis, such wavelet transform and power spectral density, allow the identification of particular frequency bands linked to weariness. Temporal patterns in the EEG signals are captured by time-domain features such autoregressive modeling and statistical moments. Furthermore, topological characteristics like brain area connection and synchronization provide light on how the brain’s functional network alters with weariness. Furthermore, the review includes an analysis of different classifiers used in fatigue driving detection, such as support vector machine (SVM), artificial neural network (ANN), and Bayesian classifier. We discuss the advantages and limitations of each classifier, along with their applications in EEG-based fatigue driving detection. Evaluation metrics and performance assessment are crucial aspects of any detection system. We discuss the commonly used evaluation criteria, including accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) curves. Comparative analyses of existing models are conducted, highlighting their strengths and weaknesses. Additionally, we emphasize the need for a standardized data marking protocol and an increased number of test subjects to enhance the robustness and generalizability of fatigue driving detection models. The review also discusses the challenges and potential solutions in EEG-based fatigue driving detection. These challenges include variability in EEG signals across individuals, environmental factors, and the influence of different driving scenarios. To address these challenges, we propose solutions such as personalized models, multi-modal data fusion, and real-time implementation strategies. In conclusion, this comprehensive review provides an extensive overview of the current state of fatigue driving detection based on EEG signals. It covers various aspects, including signal acquisition, preprocessing, feature extraction, classification, performance evaluation, and challenges. The review aims to serve as a valuable resource for researchers, engineers, and practitioners in the field of driving safety, facilitating further advancements in fatigue detection technologies and ultimately enhancing road safety.
10.Determination of lacidipine in Beagle dog plasma by UHPLC-MS/MS method
Yan-Yan WANG ; Yi-Hong JIANG ; Xiao-Ying ZHAO ; Zhen-Yu ZHOU ; Xiao-Hong LI ; Cheng-Da YAN ; Feng QIN
The Chinese Journal of Clinical Pharmacology 2024;40(20):3038-3041
Objective To establish an ultra high performance liquid chromatography-tandem mass spectrometry method for the determination of lacidipine in plasma of beagle dogs was established.Methods It was pretreated by protein precipitation method and the internal standard was nimodipine.Chromatographic column:ACQUITYUPLC? BEH C8(2.1 mm x50.0 mm,1.7 μm),mobile phase:100%water containing 5 mmol·L-1 ammonium acetate-100%acetonitrile,flow rate:0.7 mL·min-1,column temperature:40 ℃,automatic injector temperature:4 ℃,injection volume:20 μL.Electrospray ionization source,positive ion mode,multi-reaction monitoring.The specificity,residual effect,standard curve and quantitative lower limit,precision and recovery,matrix effect and stability of the method were investigated.Results Lacidipine has a good linear relationship in the range of 0.10-50.0 ng·mL-1,r=0.996 6,the lower limit of quantification was 0.10 ng·mL-1.The specificity was good.The intra-and inter-relative standard deviation was less than 12%.The extraction recovery was higher than 80%,and the stability was good.Conclusion The method has the advantages of high sensitivity,simple operation and short analysis time,and was suitable for the pharmacokinetic study of lacidipine in Beagle dog plasma.

Result Analysis
Print
Save
E-mail