1.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
2.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
3.Comparsion of bone setting technique combined with percutaneous vertebroplasty and percutaneous kyphoplasty for the treatment of osteoporotic vertebral compression fractures
Wen-Chao LI ; Peng-Fei YU ; Guang-Ye ZHU ; Hong GUO ; Ya-Hao LI ; Xian-Da ZHANG ; Chao LI ; Hong JIANG ; Hong-Wei LI
China Journal of Orthopaedics and Traumatology 2024;37(6):546-552
Objective To explore clinical efficacy of osteoplasty combined with percutaneous vertebroplasty(PVP)and percutaneous kyphoplasty(PKP)alone in treating osteoporosis vertebral compression fractures(OVCFs).Methods The clini-cal data of 80 patients with single-level OVCFs treated from January 2021 to June 2022 were retrospectively analyzed,and were divided into treatment group and control group according to different surgical methods,40 patients in each group.In treatment group,there were 24 males and 16 females,aged from 60 to 83 years old with an average of(70.43±7.31)years old;bone min-eral density ranged from-3.30 to-2.50 SD with an average of(-2.84±0.24)SD;1 patient with T10,4 patients with T11,11 pa-tients with T12,7 patients with L1,7 patients with L2,5 patients with L3,3 patients with L4,2 patients with L5;bone setting tech-nique combined with PVP were performed.In control group,there were 27 males and 13 females,aged from 60 to 82 years old with an average of(68.98±6.94)years old;bone mineral density ranged from-3.40 to-2.50 SD with an average of(-2.76±0.23)SD;2 patients with T10,3 patients with T11,13 patients with T12,11 patients with L1,5 patients with L2,3 patients with L3,2 patients with L4,1 patient with L5;simple PKP were peformed.Visual analogue scale(VAS)and lumbar Oswestry disability in-dex(ODI)were compared between two groups before operation,3 days,3 and 12 months after operation.The changes of local kyphotic angle,vertebral wedge angle and vertebral anterior margin height ratio were compared between two groups before op-eration,3 days and 12 months after operation.Results All patients were successfully completed operation.Treatment group were followed up from 13 to 22 months with an average of(16.82±2.14)months,and control group were followed up from 13 to 23 months with an average of(16.45±2.56)months.Three patients were occurred bone cement leakage in treatment group,while 1 patient were occurred bone cement leakage and 1 patient occurred sensory disturbance of lower limb skin in control group;there were no significant difference in complications between two groups(P>0.05).There were no significant difference in preoperative VAS and ODI between two groups(P>0.05).At 3 days after operation,VAS of treatment group 3.68±0.62 was significantly higher than that of control group 4.00±0.72(P<0.05).There were no significant difference in VAS and ODI be-tween two groups at 3 and 12 months after operation(P>0.05).There were no significant difference in local kyphotic angle,vertebral wedge angle and vertebral anterior margin height between two groups at 3 days and 12 months after operation(P>0.05).Conclusion Compared with PKP,bone setting manipulation combined with PVP for the treatment of OVCFs has advan-tages in early postoperative pain relief.In terms of vertebral height recovery,bone setting manipulation combined with PVP and PKP alone have similar clinical effects.
4.Long-term therapeutic efficacy and prognosis analysis of complex high-risk coronary heart disease patients undergoing elective percutaneous coronary intervention with extracorporeal membrane oxygenation combined with intra-aortic balloon pump
Tian-Tong YU ; Shuai ZHAO ; Yan CHEN ; You-Hu CHEN ; Gen-Rui CHEN ; Huan WANG ; Bo-Hui ZHANG ; Xi ZHANG ; Bo-Da ZHU ; Peng HAN ; Hao-Kao GAO ; Kun LIAN ; Cheng-Xiang LI
Chinese Journal of Interventional Cardiology 2024;32(9):501-508
Objective We aimed to compare the efficacy and prognosis of percutaneous coronary intervention(PCI)in complex and high-risk patients with coronary heart disease(CHD)treated with extracorporeal membrane oxygenation(ECMO)combined with intra-aortic balloon pump(IABP)assistance,and explore the application value of combined use of mechanical circulatory support(MCS)devices in complex PCI.Methods A total of patients who met the inclusion criteria and underwent selective PCI supported by MCS at the Department of Cardiology,the First Affiliated Hospital of the Air Force Medical University from January 2018 to December 2022 were continuously enrolled.According to the mechanical circulatory support method,the patients were divided into ECMO+IABP group and IABP group.Clinical characteristics,angiographic features,in-hospital outcomes,and complications were collected.The intra-hospital outcomes and major adverse cardiovascular events(MACE)at one month and one year after the procedure were observed.The differences and independent risk factors between the two groups in the above indicators were analyzed.Results A total of 218 patients undergoing elective PCI were included,of which 66 patients were in the ECMO+IABP group and 152 patients were in the IABP group.The baseline characteristics of the two groups of patients were generally comparable,but the ECMO+IABP group had more complex lesion characteristics.The proportion of patients with atrial fibrillation(6.1%vs.0.7%,P=0.030),left main disease(43.9%vs.27.0%,P=0.018),triple vessel disease(90.9%vs.75.5%,P=0.009),and RCA chronic total occlusion disease(60.6%vs.35.5%,P<0.001)was higher in the ECMO+IABP group compared to the IABP group.The proportion of patients with previous PCI history was higher in the IABP group(32.9%vs.16.7%,P=0.014).There was no statistically significant difference in the incidence of in-hospital complications between the two groups(P=0.176),but the incidence of hypotension after PCI was higher in the ECMO+IABP group(19.7%vs.9.2%,P=0.031).The rates of 1-month MACE(4.5%vs.2.6%,P=0.435)and 1-year MACE(7.6%vs.7.9%,P=0.936)were comparable between the two groups.Multivariate analysis showed that in-hospital cardiac arrest(OR 7.17,95%CI 1.27-40.38,P=0.025)and after procedure hypotension(OR 3.60,95%CI 1.10-11.83,P=0.035)were independent risk factors for the occurrence of 1-year MACE.Conclusions Combination use of ECMO+IABP support can provide complex and high-risk coronary heart disease patients with an opportunity to achieve coronary artery revascularization through PCI,and achieve satisfactory long-term prognosis.
5.Porcine SIRT5 promotes replication of foot and mouth disease virus type O in PK-15 cells
Guo-Hui CHEN ; Xi-Juan SHI ; Xin-Tian BIE ; Xing YANG ; Si-Yue ZHAO ; Da-Jun ZHANG ; Deng-Shuai ZHAO ; Wen-Qian YAN ; Ling-Ling CHEN ; Mei-Yu ZHAO ; Lu HE ; Hai-Xue ZHENG ; Xia LIU ; Ke-Shan ZHANG
Chinese Journal of Zoonoses 2024;40(5):421-429
The effect of porcine SIRT5 on replication of foot and mouth disease virus type O(FMDV-O)and the underlying regulatory mechanism were investigated.Western blot and RT-qPCR analyses were employed to monitor expression of endoge-nous SIRT5 in PK-15 cells infected with FMDV-O.Three pairs of SIRT5-specific siRNAs were synthesized.Changes to SIRT5 and FMDV-O protein and transcript levels,in addition to virus copy numbers,were measured by western blot and RT-qPCR analyses.PK-15 cells were transfected with a eukaryotic SIRT5 expression plasmid.Western blot and RT-qPCR analyses were used to explore the impact of SIRT5 overexpression on FMDV-O replication.Meanwhile,RT-qPCR analysis was used to detect the effect of SIRT5 overexpression on the mRNA expression levels of type I interferon-stimulated genes induced by SeV and FMDV-O.The results showed that expression of SIRT5 was up-regulated in PK-15 cells infected with FMDV-O and siRNA interfered with SIRT5 to inhibit FMDV-O replication.SIRT5 overexpression promoted FMDV-O replication.SIRT5 over-expression decreased mRNA expression levels of interferon-stimulated genes induced by SeV and FMDV-O.These results suggest that FMDV-O infection stimulated expression of SIRT5 in PK-15 cells,while SIRT5 promoted FMDV-O rep-lication by inhibiting production of type I interferon-stimula-ted genes.These findings provide a reference to further ex-plore the mechanism underlying the ability of porcine SIRT5 to promote FMDV-O replication.
6.Dosimetric effect of calculation grid size on stereotactic body radiation therapy of lung cancer in helical tomotherapy planning system
Xia-Yu HANG ; Wan-Rong JIANG ; Yi-Kun LI ; Jun HU ; Yan ZHANG ; Ruo-Qi CAO ; Nan XU ; Lei WANG ; Jin-Da ZHOU ; Xiang-Dong SUN
Chinese Medical Equipment Journal 2024;45(2):52-57
Objective To investigate the dosimetric effects of different calculation grid size(CGS)in helical tomotherapy(HT)planning system on stereotactic body radiation therapy(SBRT)for non-small cell lung cancer(NSCLC).Methods Nine NSCLC patients receiving radiation therapy for the first time at some hospital from March 2019 to December 2022 were selected as the subjects.SBRT planning was carried out through the HT system with three different CGS plans(Fine,Normal,and Coarse)and the same pitch,modulation factor(MF)and optimization conditions,and the target area indexes of the three CGS plans were compared including conformity index(CI),homogeneity index(HI),dosimetric parameters of the organ at risk(OAR),point dose verification pass rate,treatment time,number of monitor units and Sinograms.SPSS 22.0 was used for statistical analysis.Results For target area HI,there weres significant differences between CGS Fine plan and Coarse plan and between CGS Normal plan and Coarse plan(P<0.05),while no statistical differences were found between CGS Fine plan and Normal plan(P>0.05).For target area CI,there were significant differences between CGS Fine plan and Coarse plan(P<0.05),while no statistical differences were found between CGS Fine plan and Normal plan and between CGS Normal plan and Coarse plan(P>0.05).For OAR dosimetric parameters,CGS Fine plan and Coarse plan had significant differences in heart Dmax and Dmean,esophageal Dmax and Dmean,V5,V20,V30 and Dmean of the whole lung and affected lung,V5 and Dmax of the affected lung and heart V10 and V30(P<0.05),CGS Normal plan and Coarse plan had obvious differences in esophageal Dmax(P<0.05),and the remained dosimetric parameters were not statistically significant(P>0.05).Fine,Normal and Coarse plans had the point dose verifica-tion pass rates being 0.96%,1.50%and 1.77%,respectively.In terms of treatment time and number of monitor units,there were significant differences between Fine plan and Coarse plan(P<0.05)while no statistical differences were found between Fine and Normal plans and between Normal and Coarse plans(P>0.05).Sinograms analyses showed Fine plan had evenly distributed segment color gradient,Coarse plan had areas of very dark and very light color gradients and Normal plan was somewhere in between.Conclusion Low CGS has to be used as much as possible to obtain accurate dose distribution during SBRT planning for NSCLC patients,which contributes to the execution of the radiation therapy plan and the prevention of ad-verse effects.[Chinese Medical Equipment Journal,2024,45(2):52-57]
7.Development of multicolor photoelectroencephalography evoked flash for selection of naval aircraft pilots
Yong-Sheng CHEN ; Jing HUANG ; Da-Wei TIAN ; Fei YU ; Hui-Bian ZHANG ; Lin ZHANG ; Ying-Juan ZHENG ; Xiao-Quan ZHU
Chinese Medical Equipment Journal 2024;45(7):112-114
Objective To develop a multicolor photoelectroencephalography evoked flash to identify photosensitive epilepsy patients during the selection of naval aircraft pilots.Methods The multicolor photoelectroencephalography evoked flash was composed of a main body,a control box and a bracket.There were four rows of LED lights in the main body,which emitted four colors of light including red,yellow,green and orange,respectively;there were three sockets for signal,light and power and one color changeover switch on the body of the control box,and a control circuit board was fixed at the bottom inside the control box;the bracket had a double-jointed arm folding structure.The flash developed was compared with the coventional photoelectroencephalography evoked flash to verify its effect for inducing photosensitive epilepsy.Results There were no significant differences between the two flashes in the numbers of identified cases with photosensitive epilepsy when the subjects were under awake and closed-eye conditions(P>0.05).Condusion The flash developed can make up for the deficiency of the coventional photoelectroencephalography evoked flash when selecting naval aircraft pilots.[Chinese Medical Equipment Journal,2024,45(7):112-114]
8.Excavation of the Active Components and Potential Mechanisms of Mori Cortex-Lycii Cortex Intervention in Acute Lung Injury with Network Pharmacology Combined with Experimental Validation
Tianyu ZHANG ; Zhenqi WU ; Guanghua LIU ; Da ZHAO ; Xiyu ZHAO ; Xuejie YU ; Xiangyu LIANG ; Zhaodong QI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(11):42-50
Objective To validate the mechanism of Mori Cortex-Lycii Cortex(MCLC)in intervening acute lung injury(ALI)based on network pharmacology,molecular docking combined with animal experiments.Methods The TCMSP database was used to obtain the active components of MCLC;the SwissTargetPrediction database was used to predict the targets of active components;the GeneCards database and DisGeNET database were used to collect the disease targets of ALI;the key targets were screened by constructing a PPI network,and the key targets were subjected to GO and KEGG pathway enrichment;a drug-component-target-pathway network was constructed using Cytoscape software;AutoDock and PyMOL software were used to validate the molecular docking of some of the compounds and targets;LPS was used to establish a mouse model of ALI for experimental validation,and experimental validation was performed to main targets and pathways.Results Totally 44 active components of MCLC and 138 action targets were obtained;26 potential targets of MCLC intervention in ALI were obtained,mainly TNF,EGFR,NFKB1,MPO,TNFRSF1A,NOX4,etc.,and the key pathways were MAPK signaling pathway,IL-17 signaling pathway,NF-κB signaling pathway,etc.;molecular docking results showed that the core active components of MCLC and the main targets had strong binding activities;animal experiments showed that MCLC at medium and high dosages could effectively improve the lung histopathological damage in ALI mice,decrease the contents of IL-6 and TNF-α in serum(P<0.01),and increase IL-10 content(P<0.01);MCLC inhibited protein expressions of EGFR,PI3K,AKT,NF-κB p65 in lung tissue(P<0.01).Conclusion MCLC may intervene ALI by components such as quercetin and buddleoside,acting on targets including EGFR and TNF,through ulti-pathways of EGFR/PI3K/NF-κB signaling pathway,etc.
9.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail