1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
4.Advances in neuroimaging mechanisms of lifelong premature ejaculation based on magnetic resonance imaging.
Da-Wei GAO ; Yi-Han JIN ; Da-Lin SUN ; Bao-Fang JIN
National Journal of Andrology 2025;31(6):552-557
Magnetic resonance imaging (MRI), as a non-invasive neuroimaging technique, has been widely employed to investigate changes in functional brain regions. In recent years, the application of MRI in the study of lifelong premature ejaculation (LPE) has progressively uncovered the pathological mechanisms underlying abnormalities in LPE-associated brain regions. These mechanisms involve brain areas associated with higher-order cognitive and decision-making regulation, sensory and perceptual processing, as well as emotional regulation and reward systems. The application and findings of MRI in the study of LPE mechanisms will be introduced in this review, with the goal of deepening our understanding of the neuroimaging-based mechanisms of LPE.
Humans
;
Premature Ejaculation/physiopathology*
;
Male
;
Magnetic Resonance Imaging
;
Neuroimaging
;
Brain
5.Association between atherogenic index of plasma trajectory and new-onset coronary heart disease in Chinese elderly people: a prospective cohort study.
Wan-Li HU ; Yv-Lin CHENG ; Dong-Hai SU ; Yv-Fang CUI ; Zi-Hao LI ; Ge-Fei LI ; Hai-Yun GAO ; Da-Tian GAO ; Xiao-Ke ZHANG ; Song-He SHI
Journal of Geriatric Cardiology 2025;22(10):835-843
BACKGROUND:
The atherogenic index of plasma (AIP) has been shown to be positively correlated with cardiovascular disease in previous studies. However, it is unclear whether elderly people with long-term high AIP levels are more likely to develop coronary heart disease (CHD). Therefore, the aim of this study was to investigate the relationship between AIP trajectory and CHD incidence in elderly people.
METHODS:
19,194 participants aged ≥ 60 years who had three AIP measurements between 2018 and 2020 were included in this study. AIP was defined as log10 (triglyceride/high-density lipoprotein cholesterol). The group-based trajectory model was used to identify different trajectory patterns of AIP from 2018 to 2020. Cox proportional hazards models were used to estimate the hazard ratio (HR) with 95% CI of CHD events between different trajectory groups from 2020 to 2023.
RESULTS:
Three different trajectory patterns were identified through group-based trajectory model: the low-level group (n = 7410, mean AIP: -0.25 to -0.17), the medium-level group (n = 9981, mean AIP: 0.02-0.08), and the high-level group (n = 1803, mean AIP: 0.38-0.42). During a mean follow-up of 2.65 years, a total of 1391 participants developed CHD. After adjusting for potential confounders, compared with the participants in the low-level group, the HR with 95% CI of the medium-level group and the high-level group were estimated to be 1.24 (1.10-1.40) and 1.43 (1.19-1.73), respectively. These findings remained consistent in subgroup analyses and sensitivity analyses.
CONCLUSIONS
There was a significant correlation between persistent high AIP level and increased CHD risk in the elderly. This suggests that monitoring the long-term changes in AIP is helpful to identify individuals at high CHD risk in elderly people.
6.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
7.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
8.Colon Dialysis with Yishen Decoction Improves Autophagy Disorder in Intestinal Mucosal Epithelial Cells of Chronic Renal Failure by Regulating SIRT1 Pathway.
Yan-Jun FAN ; Jing-Ai FANG ; Su-Fen LI ; Ting LIU ; Wen-Yuan LIU ; Ya-Ling HU ; Rui-Hua WANG ; Hui LI ; Da-Lin SUN ; Guang ZHANG ; Zi-Yuan ZHANG
Chinese journal of integrative medicine 2025;31(10):899-907
OBJECTIVE:
To explore the mechanism of colon dialysis with Yishen Decoction (YS) in improving the autophagy disorder of intestinal epithelial cells in chronic renal failure (CRF) in vivo and in vitro.
METHODS:
Thirty male SD rats were randomly divided into normal, CRF, and colonic dialysis with YS groups by a random number table method (n=10). The CRF model was established by orally gavage of adenine 200 mg/(kg•d) for 4 weeks. CRF rats in the YS group were treated with colonic dialysis using YS 20 g/(kg•d) for 14 consecutive days. The serum creatinine (SCr) and urea nitrogen (BUN) levels were detected by enzyme-linked immunosorbent assay. Pathological changes of kidney and colon tissues were observed by hematoxylin and eosin staining. Autophagosome changes in colonic epithelial cells was observed with electron microscopy. In vitro experiments, human colon cancer epithelial cells (T84) were cultured and divided into normal, urea model (74U), YS colon dialysis, autophagy activator rapamycin (Ra), autophagy inhibitor 3-methyladenine (3-MA), and SIRT1 activator resveratrol (Re) groups. RT-PCR and Western blot were used to detect the mRNA and protein expressions of zonula occludens-1 (ZO-1), Claudin-1, silent information regulator sirtuin 1 (SIRT1), LC3, and Beclin-1 both in vitro and in vivo.
RESULTS:
Colonic dialysis with YS decreased SCr and BUN levels in CRF rats (P<0.05), and alleviated the pathological changes of renal and colon tissues. Expressions of SIRT1, ZO-1, Claudin-1, Beclin-1, and LC3II/I were increased in the YS group compared with the CRF group in vivo (P<0.05). In in vitro study, compared with normal group, the expressions of SIRT1, ZO-1, and Claudin-1 were decreased, and expressions of Beclin-1, and LC3II/I were increased in the 74U group (P<0.05). Compared with the 74U group, expressions of SIRT1, ZO-1, and Claudin-1 were increased, whereas Beclin-1, and LC3II/I were decreased in the YS group (P<0.05). The treatment of 3-MA and rapamycin regulated autophagy and the expression of SIRT1. SIRT1 activator intervention up-regulated autophagy as well as the expressions of ZO-1 and Claudin-1 compared with the 74U group (P<0.05).
CONCLUSION
Colonic dialysis with YS could improve autophagy disorder and repair CRF intestinal mucosal barrier injury by regulating SIRT1 expression in intestinal epithelial cells.
Animals
;
Sirtuin 1/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Autophagy/drug effects*
;
Male
;
Intestinal Mucosa/drug effects*
;
Rats, Sprague-Dawley
;
Epithelial Cells/metabolism*
;
Colon/drug effects*
;
Humans
;
Kidney Failure, Chronic/drug therapy*
;
Signal Transduction/drug effects*
;
Renal Dialysis
;
Rats
;
Kidney/drug effects*
9.Three-dimensional Heterogeneity and Intrinsic Plasticity of the Projection from the Cerebellar Interposed Nucleus to the Ventral Tegmental Area.
Chen WANG ; Si-Yu WANG ; Kuang-Yi MA ; Zhao-Xiang WANG ; Fang-Xiao XU ; Zhi-Ying WU ; Yan GU ; Wei CHEN ; Ying SHEN ; Li-Da SU ; Lin ZHOU
Neuroscience Bulletin 2025;41(1):159-164
10.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones

Result Analysis
Print
Save
E-mail