2.A prospective study of genetic screening of 2 060 neonates by high-throughput sequencing.
Danyan ZHUANG ; Fei WANG ; Shuxia DING ; Zhoushu ZHENG ; Qi YU ; Lanqiu LYU ; Shuni SUN ; Rulai YANG ; Wenwen QUE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(6):641-647
OBJECTIVE:
To assess the value of genetic screening by high-throughput sequencing (HTS) for the early diagnosis of neonatal diseases.
METHODS:
A total of 2 060 neonates born at Ningbo Women and Children's Hospital from March to September 2021 were selected as the study subjects. All neonates had undergone conventional tandem mass spectrometry metabolite analysis and fluorescent immunoassay analysis. HTS was carried out to detect the definite pathogenic variant sites with high-frequency of 135 disease-related genes. Candidate variants were verified by Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 2 060 newborns, 31 were diagnosed with genetic diseases, 557 were found to be carriers, and 1 472 were negative. Among the 31 neonates, 5 had G6PD, 19 had hereditary non-syndromic deafness due to variants of GJB2, GJB3 and MT-RNR1 genes, 2 had PAH gene variants, 1 had GAA gene variants, 1 had SMN1 gene variants, 2 had MTTL1 gene variants, and 1 had GH1 gene variants. Clinically, 1 child had Spinal muscular atrophy (SMA), 1 had Glycogen storage disease II, 2 had congenital deafness, and 5 had G6PD deficiency. One mother was diagnosed with SMA. No patient was detected by conventional tandem mass spectrometry. Conventional fluorescence immunoassay had revealed 5 cases of G6PD deficiency (all positive by genetic screening) and 2 cases of hypothyroidism (identified as carriers). The most common variants identified in this region have involved DUOX2 (3.93%), ATP7B (2.48%), SLC26A4 (2.38%), GJB2 (2.33%), PAH (2.09%) and SLC22A5 genes (2.09%).
CONCLUSION
Neonatal genetic screening has a wide range of detection and high detection rate, which can significantly improve the efficacy of newborn screening when combined with conventional screening and facilitate secondary prevention for the affected children, diagnosis of family members and genetic counseling for the carriers.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Prospective Studies
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Glucosephosphate Dehydrogenase Deficiency
;
Mutation
;
Sulfate Transporters/genetics*
;
DNA Mutational Analysis
;
Genetic Testing/methods*
;
Deafness/genetics*
;
Neonatal Screening/methods*
;
Hearing Loss, Sensorineural/genetics*
;
High-Throughput Nucleotide Sequencing
;
Solute Carrier Family 22 Member 5/genetics*
3.Results of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
Hongqin HE ; Li SU ; Jia XU ; Yiwen WANG ; Yarong WANG ; Cui GUO ; Dandan LINGHU
Chinese Journal of Medical Genetics 2023;40(7):815-820
OBJECTIVE:
To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
METHODS:
Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test.
RESULTS:
Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05).
CONCLUSION
Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.
Infant, Newborn
;
Humans
;
Connexins/genetics*
;
Retrospective Studies
;
Deafness/genetics*
;
Connexin 26/genetics*
;
Neonatal Screening/methods*
;
Mutation
;
Genetic Testing/methods*
;
China/epidemiology*
;
Hearing
;
DNA Mutational Analysis
4.Correlation Analysis of FⅧGene Mutation and the Production of FⅧ Inhibitor with Severe Hemophilia A Patients in a Single Medical Center.
Lyu-Kai ZHU ; Xia-Lin ZHANG ; Xiu-E LIU ; Xiu-Yu QIN ; Gang WANG ; Lin-Hua YANG
Journal of Experimental Hematology 2022;30(5):1536-1540
OBJECTIVE:
To investigate the relationship between the type of FⅧgene mutation and the development of FⅧ inhibitors in patients with severe haemophilia A (HA).
METHODS:
The medical records of 172 patients with severe hemophilia A from January 2009 to September 2020 were reviewed. The types of FⅧgene mutations and the production of factor Ⅷ inhibitors were collected and divided into high-risk mutation group ( intron 1 inversions, large deletions, nonsense mutations), low-risk mutation group (missense mutations, small deletions and insertions, splice site mutations) and intron 22 inversions group. The correlation of FⅧgenotype and the production of FⅧ inhibitors in patients with HA were analyzed.
RESULTS:
Among 172 patients with severe HA, 21 cases(12.21%) developed FⅧ inhibitors. The cumulative incidence of FⅧ inhibitor development was 32%(10/31) in high risk group (75% patients with large deletions, 43% patients with intron 1 inversions, 20% patients with nonsense mutations) and 5%(2/43) in low risk group(6% patients with missense mutations, 5% patients with small deletions or insertions and 0% patient with a splice site mutation) and 9%(9/98) in intron 22 inversions group. Compared with the risk of FⅧ inhibitor development in intron 22 inversions group, the risk of FⅧ inhibitor development in high risk group was higher (OR=4.7, 95% CI: 1.7-13.0), the risk of FⅧ inhibitor development in low risk group was equal (OR=0.5, 95% CI: 0.1-2.3). Compared with the risk of inhibitor development in low risk group, the risk of FⅧ inhibitor development in high risk group was higher (OR=9.8, 95% CI: 2.0-48.7).
CONCLUSION
Gene mutations of patients with severe HA in high-risk group which include intron 1 inversions, large deletions, nonsense mutations are a risk factor for FⅧ inhibitor production.
Codon, Nonsense
;
DNA Mutational Analysis
;
Factor VIII/genetics*
;
Hemophilia A/genetics*
;
Humans
;
Introns
;
Mutation
5.Analysis of PDK1 gene variants and prenatal diagnosis for eight pedigrees affected with autosomal dominant polycystic kidney disease.
Huijun LI ; Peixuan CAO ; Xiangyu ZHU ; Yujie ZHU ; Xing WU ; Jie LI
Chinese Journal of Medical Genetics 2022;39(9):932-937
OBJECTIVE:
To detect potential variants in eight Chinese pedigrees affected with autosomal dominant polycystic kidney disease (ADPKD) and provide prenatal diagnosis for two of them.
METHODS:
Whole exome sequencing and high-throughput sequencing were carried out to detect variants of PKD1 and PKD2 genes in the probands. Sanger sequencing was used to validate the variants, and their pathogenicity was predicted by searching the ADPKD and protein variation databases.
RESULTS:
Eight PKD1 variants were detected, which have included five nonsense mutations and three missense mutations. Among these, four nonsense variants (PKD1: c.7555C>T, c.7288C>T, c.4957C>T, c.11423G>A) were known to be pathogenic, whilst one missense variant (PKD1: c.2180T>G) was classified as likely pathogenic. Three novel variants were detected, which included c.6781G>T (p.Glu2261*), c.109T>G (p.Cys37Gly) and c.8495A>G (p.Asn2832Ser). Prenatal testing showed that the fetus of one family has carried the same mutation as the proband, while the fetus of another family did not.
CONCLUSION
PKD1 variants, including three novel variants, have been identified in the eight pedigrees affected with ADPKD. Based on these results, prenatal diagnosis and genetic counseling have been provided.
DNA Mutational Analysis/methods*
;
Female
;
Humans
;
Mutation
;
Pedigree
;
Polycystic Kidney, Autosomal Dominant/genetics*
;
Pregnancy
;
Prenatal Diagnosis
;
TRPP Cation Channels/genetics*
6.Cell HE staining smears and paired cell paraffin sections in detection of epithelial growth factor receptor gene of pleural fluid specimens.
Fang HOU ; Changhai QI ; Yiyan LU ; Fang LI ; Zhihong HAO
Journal of Central South University(Medical Sciences) 2022;47(1):35-44
OBJECTIVES:
The advanced non-small cell lung cancer (NSCLC) patients with pleural effusion have no opportunity for surgery treatment. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the first-line drugs for these patients with EGFR-sensitive mutation. However, the disease progression and drug update during or after treatment of EGFR-TKIs bring more challenges and puzzles to clinical diagnosis and treatment, which inevitably requires archived pleural cell samples for EGFR re-examination or comparative study. Understanding the DNA quality of archived pleural fluid samples and effectively using archival data of pleural fluid cells are of great significance for tracing the origin of cases and basic medical research. This study aims to evaluate the consistency of EGFR mutant gene expression between the 2 methods, and to explore a reliable way for preserving cytological data and making full use of cytological archival data via cell HE staining smear and cell paraffin section.
METHODS:
A total of 57 pleural fluid cytology cases in the Department of Pathology of China Aerospace Center Hospital from October 2014 to April 2021 were selected. Tumor cells were detected by cell HE staining smears and immunohistochemical staining for TTF-1 and Napsin A in the paired cell paraffin sections. There were more than 200 tumor cells in cell HE staining smear and the proportion of tumor cells were ≥70% in matched cell paraffin sections. Patients with 2 cell smears (one for cell data retention and the other for DNA extraction) were selected as the research subjects, and 57 pleural fluid samples were enrolled. EGFR gene mutation was detected by amplification refractory mutation system-polymerase chain reaction in 57 paired cell HE staining smears and cell paraffin sections. DNA concentration was 2 ng/μL. Cell HE smear was amplified side-by-side with DNA samples from paired cell paraffin sections. Result determination was according to the requirements of the reagent instructions. The external control cycle threshold (Ct) value of the No. 8 well of the samples to be tested was between 13 and 21, which was considered as successful and reliable samples. When the Ct value of EGFR gene mutation was <26, it was considered as positive; when the Ct value was between 26 and 29, it was critical positive; when the Ct value was equal or more than 29, it was negative. ΔCt value was the difference between mutant Ct value and externally controlled Ct value. The smaller the ΔCt value was, the better the quality of DNA of the detected sample was.
RESULTS:
Among the 57 pleural effusion samples, 42 patients were hospitalized with pleural effusion as the first symptom, accounting for 73.7% (42/57). EGFR mutation was detected in 37 samples [64.9% (37/57)]. The mutation rate for 19del was 37.8% (14/37) while for L858R was 48.6% (18/37). Females were 56.7% (21/37) of mutation cases. The mutation consistency rate of cell HE staining smear and matched cell paraffin sections was 100%. The ΔCt values of cell HE staining smears were less than those of matched cell paraffin sections. The mutation Ct values of 37 cytological samples were statistically analyzed according to the preservation periods of the years of 2014-2015, 2016-2017, 2018-2019, and 2020-2021. There were significant differences in cell paraffin section in the years of 2014-2015 and 2016-2017 compared with the years of 2018-2019 and 2020-2021, while no significant differences were found in cell HE staining smear. Statistical analysis of externally controlled Ct values of 57 cytological samples showed that there were significant differences between cell HE staining smears and cell paraffin section in the years of 2014-2015 and 2016-2017, compared with the years of 2018-2019 and 2020-2021. The mutational Ct values of 37 paired cell blocks and smears were all <26, and the externally controlled Ct values of 57 paired cell paraffin sections and HE staining smears were all between 13 and 21.
CONCLUSIONS
The DNA quality of cell HE smears and matched cell paraffin section met the qualified requirements. Two methods possess show an excellent consistency in detecting EGFR mutation in NSCLC pleural fluid samples. The DNA quality of cell HE staining smear is better than that of cell paraffin sections, so cell HE staining smear can be used as important supplement of the gene test source. It should be noted that the limitation of cell HE staining smears is non-reproducibility, so multiple smears of pleural fluid are recommended to be prepared for multiple tests.
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
DNA Mutational Analysis/methods*
;
ErbB Receptors/genetics*
;
Female
;
Humans
;
Lung Neoplasms/drug therapy*
;
Male
;
Mutation
;
Paraffin/therapeutic use*
;
Pleural Effusion/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Staining and Labeling
7.Analysis of results of concurrent hearing and deafness genetic screening and follow up of 33 911 newborns.
Jie LEI ; Luhao HAN ; Xi DENG ; Min LONG ; Yanwei XIAO ; Xiaowen LIN ; Jing ZHANG
Chinese Journal of Medical Genetics 2021;38(1):32-36
OBJECTIVE:
To analyze the results of concurrent hearing and deafness genetic screening and follow up of newborns.
METHODS:
In total 33 911 babies born to 5 designated hospitals in Nanshan District of Shenzhen city from October 2017 to December 2019 were included. All subjects underwent concurrent hearing and deafness genetic screening covering 21 variants of 4 genes including GJB2, SLC26A4, GJB3 and Mt12SrRNA. For those with positive results, Sanger sequencing was carried out for confirmation.
RESULTS:
93.32% subjects passed the first-round hearing screening, and 87.01% passed the recheck testing. The overall detection rate was 4.18%. The detection rates for GJB2, SLC26A4, GJB3 and Mt12srRNA variants were 1.98%, 1.58%, 0.37% and 0.25%, respectively. 126 and 84 subjects were found with high risk for delayed-onset and drug-induced hearing loss, respectively. In addition, 4 and 5 subjects were found to harbor homozygous/compound heterozygous variants of the GJB2 and SLC26A4 genes, respectively. Concurrent screening showed that subjects (with heterozygous variants) who did not passed the two round hearing test were as follows: GJB2 with 6.75% in the first round and 2.61% in the second round testing, SLC26A4 (3.3%/1.2%), GJB3 (0.72%/0.14%) and 12SrRNA (0.36%/Nil), respectively. Moreover, the No-pass rate in the subjects with homozygous or compound variants in single gene, heterozygous variant in single gene, heterozygous variant in multiple genes, and homozygous variant in GJB3 gene were significantly higher than the subjects with negative results of genetic screening.
CONCLUSION
Concurrent newborn genetic screening can enhance the effectiveness of hearing screening and enable earlier identification and intervention for children with hearing impairment. Follow-up can improve the diagnostic rate for children who are positive for the concurrent screening. Nevertheless, genetic and hearing screening cannot replace the diagnostic testing. It is necessary to conduct comprehensive analysis for the results of genetic and hearing screening and radiological examinations. Sanger sequencing and next-generation sequencing are critical for ascertain the diagnosis.
China/epidemiology*
;
DNA Mutational Analysis
;
Deafness/genetics*
;
Follow-Up Studies
;
Genes/genetics*
;
Genetic Testing/statistics & numerical data*
;
Hearing/genetics*
;
Hearing Tests/statistics & numerical data*
;
Humans
;
Infant, Newborn
;
Mutation
;
Neonatal Screening
8.Analysis of PKD2 gene variant and protein localization in a pedigree affected with polycystic kidney disease.
Jianping CHENG ; Ping LI ; Yujun LI ; Yong'an ZHOU ; Ruirui REN ; Yaxin HAN ; Xingxing LI ; Zhe LI ; Yuan BAI
Chinese Journal of Medical Genetics 2021;38(1):47-51
OBJECTIVE:
To detect the mutation site in a pedigree affected with autosomal dominant polycystic kidney disease (ADPKD) and verify its impact on the protein function.
METHODS:
Peripheral blood samples were collected from the proband and his pedigree members for the extraction of genomic DNA. Mutational analysis was performed on the proband through whole-exome sequencing. Suspected variant was verified by Sanger sequencing. A series of molecular methods including PCR amplification, restriction enzyme digestion, ligation and transformation were also used to construct wild-type and mutant eukaryotic expression vectors of the PKD2 gene, which were transfected into HEK293T and HeLa cells for the observation of protein expression and cell localization.
RESULTS:
The proband was found to harbor a c.2051dupA (p. Tyr684Ter) frame shift mutation of the PKD2 gene, which caused repeat of the 2051st nucleotide of its cDNA sequence and a truncated protein. Immunofluorescence experiment showed that the localization of the mutant protein within the cell was altered compared with the wild-type, which may be due to deletion of the C-terminus of the PKD2 gene.
CONCLUSION
The c.2051dupA (p. Tyr684Ter) mutation of the PKD2 gene probably underlay the pathogenesis of ADPKD in this pedigree.
DNA Mutational Analysis
;
Female
;
Frameshift Mutation
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Male
;
Pedigree
;
Polycystic Kidney, Autosomal Dominant/physiopathology*
;
Protein Kinases/genetics*
;
Protein Transport/genetics*
;
Whole Exome Sequencing
9.Phenotypic and mutation analysis of a fetus with Cornelia de Lange syndrome Ⅰ.
Yuan LYU ; Caixia LIU ; Chuang LI ; Huan LI ; Jesse LI-LING ; Meihui LI
Chinese Journal of Medical Genetics 2021;38(1):67-70
OBJECTIVE:
To carry out genetic testing for an abortus suspected with Cornelia de Lange syndrome (CdLS).
METHODS:
History of gestation and the family was taken. Combined with prenatal ultrasonography and the phenotype of the abortus, a diagnosis was made for the proband. Fetal tissue and peripheral blood samples of its parents were collected for the extraction of genomic DNA. Whole exome sequencing was carried out to detect mutations related to the phenotype. Suspected mutations were verified in the parents through Sanger sequencing.
RESULTS:
Prenatal ultrasound found that the forearms and hands of the fetus were anomalous, in addition with poorly formed vermis cerebellum, slight micrognathia, and increased echo of bilateral renal parenchyma. Examination of the abortus has noted upper limb and facial malformations. Whole exome sequencing revealed that the fetus carried a heterozygous c.2118delG (p.Lys706fs) frameshift mutation of the NIPBL gene. The same mutation was not found in either parent.
CONCLUSION
The heterozygous c.2118delG (p.Lys706fs) frameshift mutation of the NIPBL gene probably underlies the CdLS in the fetus. Above finding has provided a basis for the genetic counseling for the family.
Cell Cycle Proteins/genetics*
;
DNA Mutational Analysis
;
De Lange Syndrome/pathology*
;
Female
;
Fetus
;
Humans
;
Male
;
Mutation
;
Phenotype
;
Pregnancy
;
Whole Exome Sequencing
10.Analysis of a child with carnitine palmitoyl transferase 1A deficiency due to variant of CPT1A gene.
Zhen ZHOU ; Liming YANG ; Hongmei LIAO ; Zeshu NING ; Bo CHEN ; Zhi JIANG ; Sai YANG ; Miao WANG ; Zhenghui XIAO
Chinese Journal of Medical Genetics 2021;38(2):184-187
OBJECTIVE:
To report on the clinical, metabolic and genetic characteristics of a child with carnitine palmitoyl transferase 1A (CPT1A) deficiency.
METHODS:
Clinical data and the level of acylcarnitine for a child who initially presented as epilepsy were analyzed. Genomic DNA was extracted from peripheral blood samples of the child and her parents and subjected to next-generation sequencing (NGS).
RESULTS:
Mass spectrometry of blood acylcarnitine indicated increased carnitine 0 (C0) and significantly increased C0/ (C16+C18). DNA sequencing revealed that the child has carried compound heterozygous variants of the CPT1A gene, namely c.1846G>A and c.2201T>C, which were respectively inherited from her mother and father.
CONCLUSION
CPT1A presenting initially as epilepsy was unreported previously. Analysis of blood acylcarnitine C0 and C0/ (C16 + C18) ratio and NGS are necessary for the identification and diagnosis of CPT1A deficiency. The c.1846G>A and c.2201T>C variants of the CPT1A gene probably underlay the disease in this child. Above finding has also enriched the spectrum of CPT1A gene variants.
Carnitine/blood*
;
Carnitine O-Palmitoyltransferase/genetics*
;
Child
;
DNA Mutational Analysis
;
Female
;
Humans
;
Hypoglycemia/genetics*
;
Lipid Metabolism, Inborn Errors/genetics*

Result Analysis
Print
Save
E-mail