2.Association Analysis Between Methylation of SCARB1 Gene Promoter and Coronary Heart Disease.
Wei LI ; Zhen-Hua WANG ; Peng SHI ; Song XUE
Acta Academiae Medicinae Sinicae 2023;45(3):405-409
Objective To explore the relationship between scavenger receptor class B member 1 (SCARB1) gene promoter methylation and the pathogenesis of coronary artery disease. Methods A total of 120 patients with coronary heart disease treated in Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine from December 2018 to May 2020 were selected as the case group,while 140 gender and age matched healthy participants were randomly selected as the control group for a case-control study.The methylation status was detected by high-throughput target sequencing after bisulfite converting,and the methylation of CpG sites in the promoter region of SCARB1 gene was compared between the two groups. Results The case group showed higher methylation level of SCARB1+67 and lower methylation level of SCARB1+134 than the control group (both P<0.001),and the differences remained statistically significant in men (both P<0.001) and women (both P<0.001).The overall methylation level in the case group was lower than that in the control group [(80.27±2.14)% vs.(81.11±1.27)%;P=0.006],while this trend was statistically significant only in men (P=0.002). Conclusion The methylation of SCARB1 gene promotor is associated with the pathogenesis and may participate in the occurrence and development of coronary heart disease.
Male
;
Humans
;
Female
;
Methylation
;
Case-Control Studies
;
China
;
Coronary Artery Disease/genetics*
;
Promoter Regions, Genetic
;
DNA Methylation
;
Scavenger Receptors, Class B/genetics*
3.Clinical Significance of SFRP1 Gene Methylation in Patients with Childhood Acute Lymphoblastic Leukemia.
Jing YAN ; Wen-Peng WANG ; Xuan LI ; Wei HAN ; Feng-Qi QI ; Ji-Zhao GAO
Journal of Experimental Hematology 2023;31(2):377-382
OBJECTIVE:
To investigate the clinical significance of SFRP1 gene and its methylation in childhood acute lymphoblastic leukemia (ALL) .
METHODS:
Methylation-specific PCR (MSP) was used to detect the methylation status of SFRP1 gene in bone marrow mononuclear cells of 43 children with newly diagnosed ALL before chemotherapy (primary group) and when the bone marrow reached complete remission d 46 after induction of remission chemotherapy (remission group), the expression of SFRP1 mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of SFRP1 protein was detected by Western blot, and clinical data of children were collected, the clinical significance of SFRP1 gene methylation in children with ALL was analyze.
RESULTS:
The positive rate of SFRP1 gene promoter methylation in the primary group (44.19%) was significantly higher than that in the remission group (11.63%) (χ2=11.328, P<0.05). The relative expression levels of SFRP1 mRNA and protein in bone marrow mononuclear cells of children in the primary group were significantly lower than those in the remission group (P<0.05). Promoter methylation of SFRP1 gene was associated with risk level (χ2=15.613, P=0.000) and survival of children (χ2=6.561, P=0.010) in the primary group, children with SFRP1 hypermethylation had significantly increased risk and shortened event-free survival time, but no significant difference in other clinical data.
CONCLUSION
Hypermethylation of SFRP1 gene promoter may be involved in the development of childhood ALL, and its hypermethylation may be associated with poor prognosis.
Child
;
Humans
;
Clinical Relevance
;
DNA Methylation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Bone Marrow/metabolism*
;
RNA, Messenger/metabolism*
;
Membrane Proteins/genetics*
;
Intercellular Signaling Peptides and Proteins/metabolism*
4.Genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells in patients with systemic sclerosis with interstitial lung disease.
Yanli XIE ; Hongjun ZHAO ; Hui LUO ; Xiaoxia ZUO ; Quanzhen LI ; Sijia LIU
Journal of Central South University(Medical Sciences) 2023;48(6):829-836
OBJECTIVES:
This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/β-catenin and chemokine signaling pathways.
METHODS:
PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/β-catenin and chemokine signal pathways was investigated.
RESULTS:
Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/β-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while β-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05).
CONCLUSIONS
There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/β- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.
Humans
;
DNA Methylation
;
Transcriptome
;
beta Catenin
;
Leukocytes, Mononuclear
;
Ligands
;
DNA
;
RNA, Messenger/genetics*
5.Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine.
Zi-Wei WANG ; Qian-Nan XU ; Cheng-Tao LI ; Xi-Ling LIU
Journal of Forensic Medicine 2023;39(1):72-82
With the improvement of DNA methylation detection techniques, studies on age-related methylation sites have found more age-specific ones across tissues, which improves the sensitivity and accuracy of age estimation. In addition, the establishment of various statistical models also provides a new direction for the age estimation of tissues from different sources. This review summarizes the related studies of age estimation based on DNA methylation from the aspects of detection technology, age-related cytosine phosphate guanine site and model selection in recent years.
DNA Methylation
;
Forensic Genetics/methods*
;
CpG Islands
;
Forensic Medicine
7.Influence of E-cadherin methylation on prognosis in children with acute lymphoblastic leukemia.
Feng-Qi QI ; Wei HAN ; Jing YAN ; Cong XIN ; Yan LI ; Lei GUO ; Wen-Peng WANG ; Ji-Zhao GAO
Chinese Journal of Contemporary Pediatrics 2023;25(1):46-50
OBJECTIVES:
To study the significance of E-cadherin and the association between E-cadherin methylation status and prognosis in children with acute lymphoblastic leukemia (ALL) by examining the mRNA and protein expression of E-cadherin and its gene methylation status in bone marrow mononuclear cells of children with ALL.
METHODS:
The samples of 5 mL bone marrow blood were collected from 42 children with ALL who were diagnosed for the first time at diagnosis (pre-treatment group) and on day 33 of induction chemotherapy (post-treatment group). RT-qPCR, Western blot, and methylation-specific PCR were used to measure the mRNA and protein expression of E-cadherin and the methylation level of the E-cadherin gene. The changes in each index after induction chemotherapy were compared.
RESULTS:
The mRNA and protein expression levels of E-cadherin in the post-treatment group were significantly higher than those in the pre-treatment group (P<0.05), while the positive rate of E-cadherin gene methylation in the post-treatment group was significantly lower than that in the pre-treatment group (P<0.05). At the end of the test, the children with negative methylation had significantly higher overall survival rate and event-free survival rate than those with positive methylation (P<0.05).
CONCLUSIONS
E-cadherin expression is associated with the development of ALL in children, and its decreased expression and increased methylation level may indicate a poor prognosis.
Child
;
Humans
;
Cadherins/genetics*
;
DNA Methylation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Prognosis
;
RNA, Messenger
8.Research Progress of DNA Methylation in Cisplatin Resistance in Lung Cancer.
Chinese Journal of Lung Cancer 2023;26(1):52-58
As one of the most common malignant tumors, lung cancer poses a serious threat to human life and health. The platinum-based drug cisplatin (DDP) is used as the first-line treatment for lung cancer. The poor prognosis of lung cancer is mostly due to developed resistance to cisplatin, which poses a serious treatment challenge. The mechanism of cisplatin resistance is complex and unclear. Numerous studies have shown that DNA methylation plays a crucial role in the emergence of lung cancer cisplatin resistance. DNA hypermethylation results in the deactivation of numerous drug resistance genes and tumor suppressor genes through a change in chromatin conformation. Finding new therapeutic targets and indicators to predict the therapeutic effect can be aided by elucidating the complex mechanism. In order to discover novel strategies to overcome cisplatin resistance in lung cancer, this paper discusses DNA methylation-mediated cisplatin resistance and offers an overview of current demethylation procedures.
.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Cell Line, Tumor
;
Cisplatin/therapeutic use*
;
DNA Methylation
;
Drug Resistance, Neoplasm/genetics*
;
Gene Expression Regulation, Neoplastic
;
Lung Neoplasms/pathology*
9.The critical importance of epigenetics in autoimmune-related skin diseases.
Frontiers of Medicine 2023;17(1):43-57
Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.
Humans
;
Autoimmune Diseases/genetics*
;
Epigenesis, Genetic
;
Lupus Erythematosus, Systemic/genetics*
;
DNA Methylation
;
Psoriasis/genetics*
10.The chemical reprogramming of unipotent adult germ cells towards authentic pluripotency and de novo establishment of imprinting.
Yuhan CHEN ; Jiansen LU ; Yanwen XU ; Yaping HUANG ; Dazhuang WANG ; Peiling LIANG ; Shaofang REN ; Xuesong HU ; Yewen QIN ; Wei KE ; Ralf JAUCH ; Andrew Paul HUTCHINS ; Mei WANG ; Fuchou TANG ; Xiao-Yang ZHAO
Protein & Cell 2023;14(7):477-496
Although somatic cells can be reprogrammed to pluripotent stem cells (PSCs) with pure chemicals, authentic pluripotency of chemically induced pluripotent stem cells (CiPSCs) has never been achieved through tetraploid complementation assay. Spontaneous reprogramming of spermatogonial stem cells (SSCs) was another non-transgenic way to obtain PSCs, but this process lacks mechanistic explanation. Here, we reconstructed the trajectory of mouse SSC reprogramming and developed a five-chemical combination, boosting the reprogramming efficiency by nearly 80- to 100-folds. More importantly, chemical induced germline-derived PSCs (5C-gPSCs), but not gPSCs and chemical induced pluripotent stem cells, had authentic pluripotency, as determined by tetraploid complementation. Mechanistically, SSCs traversed through an inverted pathway of in vivo germ cell development, exhibiting the expression signatures and DNA methylation dynamics from spermatogonia to primordial germ cells and further to epiblasts. Besides, SSC-specific imprinting control regions switched from biallelic methylated states to monoallelic methylated states by imprinting demethylation and then re-methylation on one of the two alleles in 5C-gPSCs, which was apparently distinct with the imprinting reprogramming in vivo as DNA methylation simultaneously occurred on both alleles. Our work sheds light on the unique regulatory network underpinning SSC reprogramming, providing insights to understand generic mechanisms for cell-fate decision and epigenetic-related disorders in regenerative medicine.
Male
;
Mice
;
Animals
;
Cellular Reprogramming/genetics*
;
Tetraploidy
;
Pluripotent Stem Cells/metabolism*
;
Induced Pluripotent Stem Cells/metabolism*
;
DNA Methylation
;
Spermatogonia/metabolism*
;
Germ Cells/metabolism*

Result Analysis
Print
Save
E-mail