1.SMUG1 promoted the progression of pancreatic cancer via AKT signaling pathway through binding with FOXQ1.
Zijian WU ; Wei WANG ; Jie HUA ; Jingyao ZHANG ; Jiang LIU ; Si SHI ; Bo ZHANG ; Xiaohui WANG ; Xianjun YU ; Jin XU
Chinese Medical Journal 2025;138(20):2640-2656
BACKGROUND:
Pancreatic cancer is a lethal malignancy prone to gemcitabine resistance. The single-strand selective monofunctional uracil DNA glycosylase (SMUG1), which is responsible for initiating base excision repair, has been reported to predict the outcomes of different cancer types. However, the function of SMUG1 in pancreatic cancer is still unclear.
METHODS:
Gene and protein expression of SMUG1 as well as survival outcomes were assessed by bioinformatic analysis and verified in a cohort from Fudan University Shanghai Cancer Center. Subsequently, the effect of SMUG1 on proliferation, cell cycle, and migration abilities of SMUG1 cells were detected in vitro . DNA damage repair, apoptosis, and gemcitabine resistance were also tested. RNA sequencing was performed to determine the differentially expressed genes and signaling pathways, followed by quantitative real-time polymerase chain reaction and Western blotting verification. The cancer-promoting effect of forkhead box Q1 (FOXQ1) and SMUG1 on the ubiquitylation of myelocytomatosis oncogene (c-Myc) was also evaluated. Finally, a xenograft model was established to verify the results.
RESULTS:
SMUG1 was highly expressed in pancreatic tumor tissues and cells, which also predicted a poor prognosis. Downregulation of SMUG1 inhibited the proliferation, G1 to S transition, migration, and DNA damage repair ability against gemcitabine in pancreatic cancer cells. SMUG1 exerted its function by binding with FOXQ1 to activate the Protein Kinase B (AKT)/p21 and p27 pathway. Moreover, SMUG1 also stabilized the c-Myc protein via AKT signaling in pancreatic cancer cells.
CONCLUSIONS
SMUG1 promotes proliferation, migration, gemcitabine resistance, and c-Myc protein stability in pancreatic cancer via protein kinase B signaling through binding with FOXQ1. Furthermore, SMUG1 may be a new potential prognostic and gemcitabine resistance predictor in pancreatic ductal adenocarcinoma.
Humans
;
Pancreatic Neoplasms/pathology*
;
Forkhead Transcription Factors/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation/physiology*
;
Mice
;
Uracil-DNA Glycosidase/genetics*
;
Female
;
Male
;
Gemcitabine
;
Mice, Nude
;
Apoptosis/physiology*
;
Deoxycytidine/analogs & derivatives*
;
Cell Movement/genetics*
2.Role of Mutyh in Oxidative Stress Damage in Retinopathy of Prematurity.
Hui-Juan LI ; Jie TANG ; Rui CHENG
Acta Academiae Medicinae Sinicae 2024;46(6):862-871
Objective To explore the role of the base mismatch repair gene Mutyh in retinopathy of prematurity(ROP). Methods Mutyh(-/-)and wild-type(WT)mice were used for the modeling of oxygen-induced retinopathy.The retinal oxidative stress was examined,and the ultrastructures of photoreceptors and mitochondria were observed.The biomarkers of photoreceptors and mitochondria were tested.Furthermore,the photoreceptor cell line 661W was treated with hydrogen peroxide for the modeling of oxidative stress.In the cell model,and the oxidative stress and photoreceptor functions in the cells were measured. Results In both the mouse and cell models,the expression of Mutyh was up-regulated.Mutyh knockout in mice and knockdown in cells exerted negative effects on photoreceptors and mitochondria.Mutyh overexpression showed protective functions in the cell model,indicating that Mutyh played a role in repairing photoreceptors and mitochondria. Conclusions Mutyh showed the potential to become a biomarker of ROP.Increasing Mutyh expression might have therapeutic effects on ROP,which needs further validation.
Oxidative Stress
;
Animals
;
Mice
;
DNA Glycosylases/metabolism*
;
Retinopathy of Prematurity/etiology*
;
Mice, Knockout
;
Disease Models, Animal
;
Humans
;
Mitochondria/metabolism*
3.Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination.
Fang WU ; Chen LU ; Wenhao HU ; Xin GUO ; Jiayue CHEN ; Zhidan LUO
Journal of Zhejiang University. Science. B 2023;24(8):749-754
Vibrio parahaemolyticus is a major pathogen frequently found in seafood. Rapid and accurate detection of this pathogen is important for the control of bacterial foodborne diseases and to ensure food safety. In this study, we established a one-pot system that combines uracil-DNA glycosylase (UDG), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12b (Cas12b) for detecting V. parahaemolyticus in seafood. This detection system can effectively perform identification using a single tube and avoid the risk of carry-over contamination.
Vibrio parahaemolyticus/genetics*
;
Uracil-DNA Glycosidase/genetics*
;
Hot Temperature
;
CRISPR-Cas Systems
;
Food Safety
4.Advance in research on the correlation between genotypes of susceptible mutations and clinical phenotype of familial adenomatous polyposis.
Shengliang HE ; Jing DU ; Fangqi LIU
Chinese Journal of Medical Genetics 2017;34(6):919-923
Familial adenomatous polyposis (FAP) is one of the most common hereditary colorectal cancers. Its intestinal and extra-intestinal manifestations are correlated with mutation sties of the APC gene. Potential gene modulation sites in patients who have typical clinical manifestations but with unidentified APC mutations are also discussed, which included MUTYH gene, AXIN gene and certain epigenetic changes. With the generalization of Precision Medicine, to offer individualized treatment and surveillance strategy based on the genotype-phenotype correlation will be of great value for FAP patients. This review focuses on the research advance in genotype - phenotype correlation studies of FAP patients.
Adenomatous Polyposis Coli
;
genetics
;
Axin Protein
;
genetics
;
DNA Glycosylases
;
genetics
;
Genes, APC
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Humans
;
Mutation
;
beta Catenin
;
genetics
5.Ginsenoside Rd Attenuates DNA Damage by Increasing Expression of DNA Glycosylase Endonuclease VIII-like Proteins after Focal Cerebral Ischemia.
Long-Xiu YANG ; Xiao ZHANG ; Gang ZHAO
Chinese Medical Journal 2016;129(16):1955-1962
BACKGROUNDGinsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins. This study aimed to investigate the effect of GSRd on the expression of DNA glycosylases NEILs in a rat model of focal cerebral ischemia.
METHODSNEIL expression patterns were evaluated by quantitative real-time polymerase chain reaction in both normal and middle cerebral artery occlusion (MCAO) rat models. Survival rate and Zea-Longa neurological scores were used to assess the effect of GSRd administration on MCAO rats. Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damages were evaluated by the way of real-time analysis of mutation frequency. NEIL expressions were measured in both messenger RNA (mRNA) and protein levels by quantitative polymerase chain reaction and Western blotting analysis. Apoptosis level was quantitated by the expression of cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay.
RESULTSWe found that GSRd administration reduced mtDNA and nDNA damages, which contributed to an improvement in survival rate and neurological function; significantly up-regulated NEIL1 and NEIL3 expressions in both mRNA and protein levels of MCAO rats; and reduced cell apoptosis and the expression of cleaved caspase-3 in rats at 7 days after MCAO.
CONCLUSIONSOur results indicated that the neuroprotective function of GSRd for acute ischemic stroke might be partially explained by the up-regulation of NEIL1 and NEIL3 expressions.
Animals ; Blotting, Western ; Brain Ischemia ; drug therapy ; enzymology ; DNA Damage ; drug effects ; DNA Glycosylases ; genetics ; metabolism ; Ginsenosides ; therapeutic use ; Infarction, Middle Cerebral Artery ; drug therapy ; enzymology ; Male ; N-Glycosyl Hydrolases ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley
6.Uracil-DNA glycosylase-treated reverse transcription loop-mediated isothermal amplification for rapid detection of avian influenza virus preventing carry-over contamination.
Eun Mi KIM ; Hyo Sung JEON ; Ji Jung KIM ; Yeun Kyung SHIN ; Youn Jeong LEE ; Sang Geon YEO ; Choi Kyu PARK
Journal of Veterinary Science 2016;17(3):421-425
Here, we describe a uracil-DNA glycosylase (UNG)-treated reverse transcription loop-mediated isothermal amplification (uRT-LAMP) for the visual detection of all subtypes of avian influenza A virus (AIV). The uRT-LAMP assay can prevent unwanted amplification by carryover contamination of the previously amplified DNA, although the detection limit of the uRT-LAMP assay is 10-fold lower than that of the RT-LAMP without a UNG treatment. To the best of our knowledge, this is the first successful application of deoxyuridine triphosphate/UNG strategy in RT-LAMP for AIV detection, and the assay can be applied for the rapid, and reliable diagnosis of AIVs, even in contaminated samples.
Animals
;
Deoxyuridine
;
Diagnosis
;
DNA
;
Influenza in Birds*
;
Limit of Detection
;
Reverse Transcription*
;
Uracil-DNA Glycosidase
7.Dynamic Changes in DNA Damage and Repair Biomarkers with Employment Length among Nickel Smelting Workers.
Shan WU ; Ya Na BAI ; Hong Quan PU ; Jie HE ; Tong Zhang ZHENG ; Hai Yan LI ; Min DAI ; Ning CHENG
Biomedical and Environmental Sciences 2015;28(9):679-682
Our study explored the dynamic changes in and the relationship between the DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the DNA repair marker 8-hydroxyguanine DNA glycosidase 1 (hOGG1) according to the length of occupational employment in nickel smelting workers. One hundred forty nickel-exposed smelting workers and 140 age-matched unexposed office workers were selected from the Jinchang cohort. The 8-OHdG levels in smelting workers was significantly higher than in office workers (Z=-8.688, P<0.05) and the 8-OHdG levels among nickel smelting workers in the 10-14 y employment length category was significantly higher than among all peers. The hOGG1 levels among smelting workers were significantly lower than those of non-exposed workers (Z=-8.948, P<0.05). There were significant differences between employment length and hOGG1 levels, with subjects employed in nickel smelting for 10-14 y showing the highest levels of hOGG1. Correlation analysis showed positive correlations between 8-OHdG and hOGG1 levels (r=0.413; P<0.01). DNA damage was increased with employment length among nickel smelting workers and was related to the inhibition of hOGG1 repair capacity.
Biomarkers
;
Case-Control Studies
;
Cohort Studies
;
DNA Damage
;
drug effects
;
DNA Glycosylases
;
blood
;
DNA Repair
;
Deoxyadenosines
;
blood
;
Humans
;
Male
;
Metallurgy
;
Nickel
;
toxicity
;
urine
;
Occupational Exposure
;
adverse effects
;
Time Factors
8.Exercise training in hypoxia prevents hypoxia induced mitochondrial DNA oxidative damage in skeletal muscle.
Hai BO ; ; Ling LI ; Fu-Qiang DUAN ; Jiang ZHU
Acta Physiologica Sinica 2014;66(5):597-604
This study was undertaken to investigate the effect of exercise training on mitochondrial DNA (mtDNA) oxidative damage and 8-oxoguanine DNA glycosylase-1 (OGG1) expression in skeletal muscle of rats under continuous exposure to hypoxia. Male Sprague-Dawley rats were randomly divided into 4 groups (n = 8): normoxia control group (NC), normoxia training group (NT), hypoxia control group (HC), and hypoxia training group (HT). The hypoxia-treated animals were housed in normobaric hypoxic tent containing 11.3% oxygen for consecutive 4 weeks. The exercise-trained animals were exercised on a motor-driven rodent treadmill at a speed of 15 m/min, 5% grade for 60 min/day, 5 days per week for 4 weeks. The results showed that, compared with NC group, hypoxia attenuated complex I, II, IV and ATP synthase activities of the electron transport chain, and the level of mitochondrial membrane potential in HC group (P < 0.05 or P < 0.01). Moreover, hypoxia decreased mitochondrial OGG1, MnSOD, and GPx activities (P < 0.05 or P < 0.01), whereas elevated reactive oxygen species (ROS) generation and the level of 8-oxo-deoxyguanosine (8-oxodG) in mtDNA (P < 0.01). Furthermore, hypoxia attenuated muscle and mitochondrial [NAD⁺]/ [NADH] ratio, and SIRT3 protein expression (P < 0.05 or P < 0.01). Compared with HC group, exercise training in hypoxia elevated complex I, II, IV and ATP synthase activities, and the level of mitochondrial membrane potential in HT group (P < 0.05 or P < 0.01). Moreover, exercise training in hypoxia increased MnSOD and GPx activities and mitochondrial OGG1 level (P < 0.01), whereas decreased ROS generation and the level of 8-oxodG in mtDNA (P < 0.01). Furthermore, exercise training in hypoxia increased muscle and mitochondrial [NAD⁺]/[NADH] ratio, as well as SIRT3 protein expression (P < 0.05 or P < 0.01). These findings suggest that exercise training in hypoxia can decrease hypoxia-induced mtDNA oxidative damage in the skeletal muscle through up-regulating exercise-induced mitochondrial OGG1 and antioxidant enzymes. Exercise training in hypoxia may improve hypoxia tolerance in skeletal muscle mitochondria via elevating [NAD⁺]/[NADH] ratio and SIRT3 expression.
Animals
;
DNA Glycosylases
;
metabolism
;
DNA, Mitochondrial
;
chemistry
;
Glutathione Peroxidase
;
metabolism
;
Guanine
;
analogs & derivatives
;
metabolism
;
Hypoxia
;
physiopathology
;
Male
;
Mitochondria, Muscle
;
pathology
;
Muscle, Skeletal
;
metabolism
;
Oxidative Stress
;
Physical Conditioning, Animal
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
9.Effect of hOGG1 expression level on oxidative DNA damage among workers exposed to nickel in stainless steel production environment.
YanLi LI ; Jianya SUN ; Huizhen SHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(8):578-581
OBJECTIVETo study the excision repair capacity of human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) for 8-OH-dG and the oxidative DNA damage among workers exposed to nickel in stainless steel production environment.
METHODSA total of 231 workers exposed to nickel in a stainless steel production enterprise were recruited as nickel exposure group, and another 75 water pump workers in that enterprise were recruited as control group. The workplace occupational hazard factors were determined. Double-antigen sandwich ELISA was used to determine urinary 8-OH-dG level; RT-PCR was used to determine hOGG1 mRNA level. Pearson correlation was used to analyze the correlation between urinary 8-OH-dG level and hOGG1 mRNA level.
RESULTSLevel of 8-OH-dG was compared between different types of nickel-exposed workers and control workers; rolling mill workers showed no significant difference from the control group (P > 0.05), while steel making workers and steel slag disposing workers showed significant differences from the control group (P < 0.05). Level of 8-OH-dG was also compared between nickel-exposed workers with different working years and control workers; nickel-exposed workers with 0∼5 and 6∼10 working years showed no significant differences from the control group (P > 0.05), while other exposed workers showed significant differences from the control group (P < 0.05). Different types of nickel-exposed workers all showed significant differences from the control group in hOGG1 mRNA level (P < 0.05). Nickel-exposed workers with 0∼5 working years showed no significant difference from the control group in hOGG1 mRNA level (P > 0.05), while other exposed workers showed significant differences from the control group (P < 0.05). Pearson correlation analysis showed that urinary 8-OH-dG level was positively correlated with hOGG1 mRNA level (r = 0.993) in different types of nickel-exposed workers, and the correlation was significant at α = 0.01 (P < 0.05); urinary 8-OH-dG level also showed a positive correlation with hOGG1 mRNA level in nickel-exposed workers with different working years (r = 0.968), and the correlation was significant at α = 0.01 (P < 0.05).
CONCLUSIONExposure to nickel increases oxidative DNA damage among steel workers, and hOGG1 shows active excision repair capacity for 8-OH-dG.
Adult ; DNA Damage ; DNA Glycosylases ; metabolism ; DNA Repair ; Humans ; Male ; Metallurgy ; Middle Aged ; Nickel ; adverse effects ; Occupational Exposure ; adverse effects ; Stainless Steel ; Young Adult
10.Association of 8-hydroxyguanine glycosidase OGG1 Ser326Cys polymorphism with male infertility.
Jian-Zhong CHEN ; Sheng-Min WU ; Gui-Xiang JI ; Ai-Hua GU
National Journal of Andrology 2014;20(6):518-522
OBJECTIVETo explore the association of 8-hydroxyguanine glycosidase OGG1 Ser326Cys polymorphism with semen quality and the risk of male infertility.
METHODSThis case-control study included 620 idiopathic infertile patients and 385 normal fertile controls. We determined their genotypes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and analyzed their semen quality by computer-aided semen analysis (CASA).
RESULTSThe individuals with OGG1 326 Cys/Cys showed significantly lower sperm motility and concentration ([52.1 +/- 26.7]% and (3.75 +/- 0.91) x 10(6)/ml, ln transformed value) than the Ser/Ser carriers ([59.0 +/- 21.8] % and (4.12 +/- 0.88) x 10(6)/ml, ln transformed value) (P < 0.05). The risk of male infertility increased 69% in the OGG1 326Cys allele carriers as compared with the Ser carriers (OR = 1.69, 95% CI: 1.24 -2.31).
CONCLUSIONOGG1 326 Ser/Cys polymorphism might contribute to the risk of male infertility in the southern Chinese population.
Adult ; Case-Control Studies ; DNA Glycosylases ; genetics ; Genotype ; Humans ; Infertility, Male ; genetics ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; Semen Analysis ; Young Adult

Result Analysis
Print
Save
E-mail