1.SMUG1 promoted the progression of pancreatic cancer via AKT signaling pathway through binding with FOXQ1.
Zijian WU ; Wei WANG ; Jie HUA ; Jingyao ZHANG ; Jiang LIU ; Si SHI ; Bo ZHANG ; Xiaohui WANG ; Xianjun YU ; Jin XU
Chinese Medical Journal 2025;138(20):2640-2656
BACKGROUND:
Pancreatic cancer is a lethal malignancy prone to gemcitabine resistance. The single-strand selective monofunctional uracil DNA glycosylase (SMUG1), which is responsible for initiating base excision repair, has been reported to predict the outcomes of different cancer types. However, the function of SMUG1 in pancreatic cancer is still unclear.
METHODS:
Gene and protein expression of SMUG1 as well as survival outcomes were assessed by bioinformatic analysis and verified in a cohort from Fudan University Shanghai Cancer Center. Subsequently, the effect of SMUG1 on proliferation, cell cycle, and migration abilities of SMUG1 cells were detected in vitro . DNA damage repair, apoptosis, and gemcitabine resistance were also tested. RNA sequencing was performed to determine the differentially expressed genes and signaling pathways, followed by quantitative real-time polymerase chain reaction and Western blotting verification. The cancer-promoting effect of forkhead box Q1 (FOXQ1) and SMUG1 on the ubiquitylation of myelocytomatosis oncogene (c-Myc) was also evaluated. Finally, a xenograft model was established to verify the results.
RESULTS:
SMUG1 was highly expressed in pancreatic tumor tissues and cells, which also predicted a poor prognosis. Downregulation of SMUG1 inhibited the proliferation, G1 to S transition, migration, and DNA damage repair ability against gemcitabine in pancreatic cancer cells. SMUG1 exerted its function by binding with FOXQ1 to activate the Protein Kinase B (AKT)/p21 and p27 pathway. Moreover, SMUG1 also stabilized the c-Myc protein via AKT signaling in pancreatic cancer cells.
CONCLUSIONS
SMUG1 promotes proliferation, migration, gemcitabine resistance, and c-Myc protein stability in pancreatic cancer via protein kinase B signaling through binding with FOXQ1. Furthermore, SMUG1 may be a new potential prognostic and gemcitabine resistance predictor in pancreatic ductal adenocarcinoma.
Humans
;
Pancreatic Neoplasms/pathology*
;
Forkhead Transcription Factors/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation/physiology*
;
Mice
;
Uracil-DNA Glycosidase/genetics*
;
Female
;
Male
;
Gemcitabine
;
Mice, Nude
;
Apoptosis/physiology*
;
Deoxycytidine/analogs & derivatives*
;
Cell Movement/genetics*
2.Role of Mutyh in Oxidative Stress Damage in Retinopathy of Prematurity.
Hui-Juan LI ; Jie TANG ; Rui CHENG
Acta Academiae Medicinae Sinicae 2024;46(6):862-871
Objective To explore the role of the base mismatch repair gene Mutyh in retinopathy of prematurity(ROP). Methods Mutyh(-/-)and wild-type(WT)mice were used for the modeling of oxygen-induced retinopathy.The retinal oxidative stress was examined,and the ultrastructures of photoreceptors and mitochondria were observed.The biomarkers of photoreceptors and mitochondria were tested.Furthermore,the photoreceptor cell line 661W was treated with hydrogen peroxide for the modeling of oxidative stress.In the cell model,and the oxidative stress and photoreceptor functions in the cells were measured. Results In both the mouse and cell models,the expression of Mutyh was up-regulated.Mutyh knockout in mice and knockdown in cells exerted negative effects on photoreceptors and mitochondria.Mutyh overexpression showed protective functions in the cell model,indicating that Mutyh played a role in repairing photoreceptors and mitochondria. Conclusions Mutyh showed the potential to become a biomarker of ROP.Increasing Mutyh expression might have therapeutic effects on ROP,which needs further validation.
Oxidative Stress
;
Animals
;
Mice
;
DNA Glycosylases/metabolism*
;
Retinopathy of Prematurity/etiology*
;
Mice, Knockout
;
Disease Models, Animal
;
Humans
;
Mitochondria/metabolism*
3.Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination.
Fang WU ; Chen LU ; Wenhao HU ; Xin GUO ; Jiayue CHEN ; Zhidan LUO
Journal of Zhejiang University. Science. B 2023;24(8):749-754
Vibrio parahaemolyticus is a major pathogen frequently found in seafood. Rapid and accurate detection of this pathogen is important for the control of bacterial foodborne diseases and to ensure food safety. In this study, we established a one-pot system that combines uracil-DNA glycosylase (UDG), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12b (Cas12b) for detecting V. parahaemolyticus in seafood. This detection system can effectively perform identification using a single tube and avoid the risk of carry-over contamination.
Vibrio parahaemolyticus/genetics*
;
Uracil-DNA Glycosidase/genetics*
;
Hot Temperature
;
CRISPR-Cas Systems
;
Food Safety
4.Advance in research on the correlation between genotypes of susceptible mutations and clinical phenotype of familial adenomatous polyposis.
Shengliang HE ; Jing DU ; Fangqi LIU
Chinese Journal of Medical Genetics 2017;34(6):919-923
Familial adenomatous polyposis (FAP) is one of the most common hereditary colorectal cancers. Its intestinal and extra-intestinal manifestations are correlated with mutation sties of the APC gene. Potential gene modulation sites in patients who have typical clinical manifestations but with unidentified APC mutations are also discussed, which included MUTYH gene, AXIN gene and certain epigenetic changes. With the generalization of Precision Medicine, to offer individualized treatment and surveillance strategy based on the genotype-phenotype correlation will be of great value for FAP patients. This review focuses on the research advance in genotype - phenotype correlation studies of FAP patients.
Adenomatous Polyposis Coli
;
genetics
;
Axin Protein
;
genetics
;
DNA Glycosylases
;
genetics
;
Genes, APC
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Humans
;
Mutation
;
beta Catenin
;
genetics
5.Uracil-DNA glycosylase-treated reverse transcription loop-mediated isothermal amplification for rapid detection of avian influenza virus preventing carry-over contamination.
Eun Mi KIM ; Hyo Sung JEON ; Ji Jung KIM ; Yeun Kyung SHIN ; Youn Jeong LEE ; Sang Geon YEO ; Choi Kyu PARK
Journal of Veterinary Science 2016;17(3):421-425
Here, we describe a uracil-DNA glycosylase (UNG)-treated reverse transcription loop-mediated isothermal amplification (uRT-LAMP) for the visual detection of all subtypes of avian influenza A virus (AIV). The uRT-LAMP assay can prevent unwanted amplification by carryover contamination of the previously amplified DNA, although the detection limit of the uRT-LAMP assay is 10-fold lower than that of the RT-LAMP without a UNG treatment. To the best of our knowledge, this is the first successful application of deoxyuridine triphosphate/UNG strategy in RT-LAMP for AIV detection, and the assay can be applied for the rapid, and reliable diagnosis of AIVs, even in contaminated samples.
Animals
;
Deoxyuridine
;
Diagnosis
;
DNA
;
Influenza in Birds*
;
Limit of Detection
;
Reverse Transcription*
;
Uracil-DNA Glycosidase
6.Ginsenoside Rd Attenuates DNA Damage by Increasing Expression of DNA Glycosylase Endonuclease VIII-like Proteins after Focal Cerebral Ischemia.
Long-Xiu YANG ; Xiao ZHANG ; Gang ZHAO
Chinese Medical Journal 2016;129(16):1955-1962
BACKGROUNDGinsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins. This study aimed to investigate the effect of GSRd on the expression of DNA glycosylases NEILs in a rat model of focal cerebral ischemia.
METHODSNEIL expression patterns were evaluated by quantitative real-time polymerase chain reaction in both normal and middle cerebral artery occlusion (MCAO) rat models. Survival rate and Zea-Longa neurological scores were used to assess the effect of GSRd administration on MCAO rats. Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damages were evaluated by the way of real-time analysis of mutation frequency. NEIL expressions were measured in both messenger RNA (mRNA) and protein levels by quantitative polymerase chain reaction and Western blotting analysis. Apoptosis level was quantitated by the expression of cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay.
RESULTSWe found that GSRd administration reduced mtDNA and nDNA damages, which contributed to an improvement in survival rate and neurological function; significantly up-regulated NEIL1 and NEIL3 expressions in both mRNA and protein levels of MCAO rats; and reduced cell apoptosis and the expression of cleaved caspase-3 in rats at 7 days after MCAO.
CONCLUSIONSOur results indicated that the neuroprotective function of GSRd for acute ischemic stroke might be partially explained by the up-regulation of NEIL1 and NEIL3 expressions.
Animals ; Blotting, Western ; Brain Ischemia ; drug therapy ; enzymology ; DNA Damage ; drug effects ; DNA Glycosylases ; genetics ; metabolism ; Ginsenosides ; therapeutic use ; Infarction, Middle Cerebral Artery ; drug therapy ; enzymology ; Male ; N-Glycosyl Hydrolases ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley
7.Dynamic Changes in DNA Damage and Repair Biomarkers with Employment Length among Nickel Smelting Workers.
Shan WU ; Ya Na BAI ; Hong Quan PU ; Jie HE ; Tong Zhang ZHENG ; Hai Yan LI ; Min DAI ; Ning CHENG
Biomedical and Environmental Sciences 2015;28(9):679-682
Our study explored the dynamic changes in and the relationship between the DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the DNA repair marker 8-hydroxyguanine DNA glycosidase 1 (hOGG1) according to the length of occupational employment in nickel smelting workers. One hundred forty nickel-exposed smelting workers and 140 age-matched unexposed office workers were selected from the Jinchang cohort. The 8-OHdG levels in smelting workers was significantly higher than in office workers (Z=-8.688, P<0.05) and the 8-OHdG levels among nickel smelting workers in the 10-14 y employment length category was significantly higher than among all peers. The hOGG1 levels among smelting workers were significantly lower than those of non-exposed workers (Z=-8.948, P<0.05). There were significant differences between employment length and hOGG1 levels, with subjects employed in nickel smelting for 10-14 y showing the highest levels of hOGG1. Correlation analysis showed positive correlations between 8-OHdG and hOGG1 levels (r=0.413; P<0.01). DNA damage was increased with employment length among nickel smelting workers and was related to the inhibition of hOGG1 repair capacity.
Biomarkers
;
Case-Control Studies
;
Cohort Studies
;
DNA Damage
;
drug effects
;
DNA Glycosylases
;
blood
;
DNA Repair
;
Deoxyadenosines
;
blood
;
Humans
;
Male
;
Metallurgy
;
Nickel
;
toxicity
;
urine
;
Occupational Exposure
;
adverse effects
;
Time Factors
8.Association of 8-hydroxyguanine glycosidase OGG1 Ser326Cys polymorphism with male infertility.
Jian-Zhong CHEN ; Sheng-Min WU ; Gui-Xiang JI ; Ai-Hua GU
National Journal of Andrology 2014;20(6):518-522
OBJECTIVETo explore the association of 8-hydroxyguanine glycosidase OGG1 Ser326Cys polymorphism with semen quality and the risk of male infertility.
METHODSThis case-control study included 620 idiopathic infertile patients and 385 normal fertile controls. We determined their genotypes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and analyzed their semen quality by computer-aided semen analysis (CASA).
RESULTSThe individuals with OGG1 326 Cys/Cys showed significantly lower sperm motility and concentration ([52.1 +/- 26.7]% and (3.75 +/- 0.91) x 10(6)/ml, ln transformed value) than the Ser/Ser carriers ([59.0 +/- 21.8] % and (4.12 +/- 0.88) x 10(6)/ml, ln transformed value) (P < 0.05). The risk of male infertility increased 69% in the OGG1 326Cys allele carriers as compared with the Ser carriers (OR = 1.69, 95% CI: 1.24 -2.31).
CONCLUSIONOGG1 326 Ser/Cys polymorphism might contribute to the risk of male infertility in the southern Chinese population.
Adult ; Case-Control Studies ; DNA Glycosylases ; genetics ; Genotype ; Humans ; Infertility, Male ; genetics ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; Semen Analysis ; Young Adult
9.A study of the substitution effect of hOGG1 and hMTH1 in oxidative DNA damage with gene-deficient cell strains.
Yuebin KE ; Shuang WU ; Juan HUANG ; Jianhui YUAN ; Pingjian DENG ; Jinquan CHENG
Chinese Journal of Preventive Medicine 2014;48(3):197-202
OBJECTIVETo investigate the potential substitution effect of hOGG1 and hMTH1 on oxidative DNA damage, based on gene-deficient cell strains models.
METHODShOGG1 and hMTH1 gene deficient cell strains models were established by Human embryonic lung fibroblasts (HFL) cells. After HFL cells being exposed to 100 µmol/L H₂O₂ for 12 h, HPLC-EC detecting technique and RT-PCR method were adopted to analyze the genetic expression level of 8-oxo-dG (7, 8-dihydro-8-oxoguanine).
RESULTSThe gene-deficient cell strains models of hOGG1 and hMTH1 were obtained by infecting target cells with high titer of lentivirus. The mRNA expression level of hOGG1 was 0.09 ± 0.02, 91% lower than it in normal HFL cells, which was 1.00 ± 0.04. As the same, the mRNA expression level of hMTH1 (0.41 ± 0.04) also decreased by 60% compared with it in normal HFL cells (1.02 ± 0.06). After induced by 100 µmol/L H₂O₂ for 12 h, the genetic expression level of hMTH1 in hOGG1 gene-deficient cells (1.26 ± 0.18) increased 25% compared with it in control group (1.01 ± 0.07). Meanwhile, the genetic expression level of hOGG1 in hMTH1 gene-deficient cells (1.54 ± 0.25) also increased by 52%. The DNA 8-oxo-dG levels in hOGG1 gene-deficient cells (2.48 ± 0.54) was 3.1 times compared with it in the control group (0.80 ± 0.16), the difference showed statistical significance (P < 0.01). Whereas the 8-oxo-dG levels in hMTH1 gene-deficient cells (1.84 ± 0.46) was 2.3 times of it in the control group, the difference also showed statistical significance (P < 0.01).
CONCLUSIONBased on gene-deficient HFL cells models, a synergetic substitution effect on DNA damage and repair activity by both hOGG1 and hMTH1 were firstly discovered when induced by oxidation. The substitution effect of hOGG1 were stronger than that of hMTH1.
Cell Line ; DNA Damage ; DNA Glycosylases ; genetics ; DNA Repair ; DNA Repair Enzymes ; genetics ; Fibroblasts ; metabolism ; Humans ; Oxidative Stress ; genetics ; Phosphoric Monoester Hydrolases ; genetics
10.Frequently ABL kinase domain G:C→A:T mutation and uracil DNA glycosylase abnormal expression in TKI-resistant acute lymphoblastic leukemia of Chinese population.
Hong-Jie SHEN ; Zi-Xing CHEN ; Jun HE ; Jian-Nong CEN ; Qiao-Chen QIU ; Zi-Xuan DING ; Li YAO ; Yan CHEN ; Su-Ning CHEN ; Yong-Quan XUE
Journal of Experimental Hematology 2014;22(4):889-893
Most Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL) patients often show rapid recurrence and development of ABL kinase domain (KD) mutation after tyrosine kinase inhibitor (TKI) treatment. To further investigate the mechanism of Ph(+) ALL fast relapse after TKI treatment, ABL KD mutation in 35 Chinese Ph(+) ALL with TKI resistance was detected by direct sequencing. The results showed that 77.1% (27/35) Ph(+) ALL patients with TKI resistance had ABL KD mutation and 55.6% (15/27) Ph(+) ALL patients with ABL KD mutation had T315I. Interestingly, 77.8% (21/27) Ph(+)ALL showed ABL mutation G: C→A:T, including T315I, E255K and E459K. Furthermore, all the Ph(+) ALL patients with two or more ABL KD mutations collaborated with complex chromosome abnormality and all the TKI-resistant Ph(+) ALL patients, whose karyotype progressed from simple t (9;22) into complex, developed ABL KD mutation. Moreover, the expression level of uracil-DNA glycosylase UNG2, which inhibits G:C→A:T transition in genomic DNA, decreased in Ph(+) ALL with TKI-resistance compared to that in newly diagnosis Ph(+) ALL. It is concluded that there is a high frequent ABL KD G:C→A:T mutation and a high genomic instability in Chinese TKI-resistant Ph(+) ALL. In addition, the decreased UNG2 expression in TKI-resistant Ph(+) ALL probably contributes to their high rate of ABL KD G:C→A:T mutation.
Adolescent
;
Adult
;
Asian Continental Ancestry Group
;
genetics
;
DNA Glycosylases
;
genetics
;
Drug Resistance, Neoplasm
;
genetics
;
Female
;
Humans
;
Male
;
Middle Aged
;
Point Mutation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
Protein Kinase Inhibitors
;
pharmacology
;
Uracil-DNA Glycosidase
;
genetics

Result Analysis
Print
Save
E-mail