2.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
3.RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification.
Xiaochen WANG ; Rongsong LING ; Yurong PENG ; Weiqiong QIU ; Demeng CHEN
International Journal of Oral Science 2024;16(1):6-6
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Humans
;
DNA-Binding Proteins
;
Head and Neck Neoplasms/genetics*
;
N-Terminal Acetyltransferases
;
RNA, Transfer
;
Serine
;
Signal Transduction
;
Squamous Cell Carcinoma of Head and Neck
4.Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction.
Ning WU ; Ling WEI ; Zhipeng ZHU ; Qiang LIU ; Kailong LI ; Fengbiao MAO ; Jie QIAO ; Xiaolu ZHAO
Protein & Cell 2024;15(1):6-20
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Male
;
Female
;
Animals
;
Humans
;
Swine
;
DNA, Circular/genetics*
;
Genital Neoplasms, Female
;
Semen
;
DNA
;
Reproduction
6.Improved outcomes in E2A::HLF positive B-cell acute lymphoblastic leukemia by chimeric antigen receptor T cell therapy and BCL-2 inhibitor.
Shumin CHEN ; Ye LI ; Zheng WANG ; Lin FENG ; Yueping JIA ; Xiaodong MO ; Yu WANG ; Qian JIANG ; Xiaojun HUANG ; Yueyun LAI
Chinese Medical Journal 2023;136(11):1382-1384
7.A robust microsatellite instability detection model for unpaired colorectal cancer tissue samples.
Zili ZHANG ; Hua WAN ; Bing XU ; Hongyang HE ; Guangyu SHAN ; Jingbo ZHANG ; Qixi WU ; Tong LI
Chinese Medical Journal 2023;136(9):1082-1088
BACKGROUND:
Microsatellite instability (MSI) is a key biomarker for cancer immunotherapy and prognosis. Integration of MSI testing into a next-generation-sequencing (NGS) panel could save tissue sample, reduce turn-around time and cost, and provide MSI status and comprehensive genomic profiling in single test. We aimed to develop an MSI calling model to detect MSI status along with the NGS panel-based profiling test using tumor-only samples.
METHODS:
From January 2019 to December 2020, a total of 174 colorectal cancer (CRC) patients were enrolled, including 31 MSI-high (MSI-H) and 143 microsatellite stability (MSS) cases. Among them, 56 paired tumor and normal samples (10 MSI-H and 46 MSS) were used for modeling, and another 118 tumor-only samples were used for validation. MSI polymerase chain reaction (MSI-PCR) was performed as the gold standard. A baseline was built for the selected microsatellite loci using the NGS data of 56 normal blood samples. An MSI detection model was constructed by analyzing the NGS data of tissue samples. The performance of the model was compared with the results of MSI-PCR.
RESULTS:
We first intersected the target genomic regions of the NGS panels used in this study to select common microsatellite loci. A total of 42 loci including 23 mononucleotide repeat sites and 19 longer repeat sites were candidates for modeling. As mononucleotide repeat sites are more sensitive and specific for detecting MSI status than sites with longer length motif and the mononucleotide repeat sites performed even better than the total sites, a model containing 23 mononucleotide repeat sites was constructed and named Colorectal Cancer Microsatellite Instability test (CRC-MSI). The model achieved 100% sensitivity and 100% specificity when compared with MSI-PCR in both training and validation sets. Furthermore, the CRC-MSI model was robust with the tumor content as low as 6%. In addition, 8 out of 10 MSI-H samples showed alternations in the four mismatch repair genes ( MLH1 , MSH2 , MSH6 , and PMS2 ).
CONCLUSION
MSI status can be accurately determined along the targeted NGS panels using only tumor samples. The performance of mononucleotide repeat sites surpasses loci with longer repeat motif in MSI calling.
Humans
;
Microsatellite Instability
;
Colorectal Neoplasms/diagnosis*
;
Microsatellite Repeats/genetics*
;
DNA Mismatch Repair
8.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage
9.Tools for large-scale genetic manipulation of yeast genome.
Jieyi LI ; Hanze TONG ; Yi WU
Chinese Journal of Biotechnology 2023;39(6):2465-2484
Large-scale genetic manipulation of the genome refers to the genetic modification of large fragments of DNA using knockout, integration and translocation. Compared to small-scale gene editing, large-scale genetic manipulation of the genome allows for the simultaneous modification of more genetic information, which is important for understanding the complex mechanisms such as multigene interactions. At the same time, large-scale genetic manipulation of the genome allows for larger-scale design and reconstruction of the genome, and even the creation of entirely new genomes, with great potential in reconstructing complex functions. Yeast is an important eukaryotic model organism that is widely used because of its safety and easiness of manipulation. This paper systematically summarizes the toolkit for large-scale genetic manipulation of the yeast genome, including recombinase-mediated large-scale manipulation, nuclease-mediated large-scale manipulation, de novo synthesis of large DNA fragments and other large-scale manipulation tools, and introduces their basic working principles and typical application cases. Finally, the challenges and developments in large-scale genetic manipulation are presented.
DNA
;
Gene Editing
;
Genetic Engineering
;
Saccharomyces cerevisiae/genetics*
;
Translocation, Genetic
10.Construction of a replicative expression vector based on the porcine circovirus 2 replicon.
Xiaoxue CAI ; Jun LI ; Zhangxun LI ; Hongxu DU ; Liting CAO ; Yue MA
Chinese Journal of Biotechnology 2023;39(7):2634-2643
The antigen gene expression level of a DNA vaccine is the key factor influencing the efficacy of the DNA vaccine. Accordingly, one of the ways to improve the antigen gene expression level of a DNA vaccine is to utilize a plasmid vector that is replicable in eukaryotic cells. A replicative DNA vaccine vector pCMVori was constructed based on the non-replicative pcDNA3.1 and the replicon of porcine circovirus 2 (PCV2) in this study. An EGFP gene was cloned into pCMVori and the control plasmid pcDNA3.1. The two recombinant vectors were transfected into PK-15 cell, and the plasmid DNA and RNA were extracted from the transfected cells. Real-time PCR was used to determine the plasmid replication efficiency of the two plasmids using plasmid before and after Bcl Ⅰ digestion as templates, and the transcription level of the Rep gene in PCV2 replicon was detected by RT-PCR. The average fluorescence intensity of cells transfected with the two plasmids was analyzed with software Image J, and the transcription level of EGFP was determined by means of real-time RT-PCR. The results showed that the replication efficiency of pCMVori in PK-15 cells incubated for 48 h was 136%, and the transcriptions of Rep and Rep' were verified by RT-PCR. The average fluorescence intensity of the cells transfected with pCMVori-EGFP was 39.14% higher than that of pcDNA3.1-EGFP, and the transcription level of EGFP in the former was also 40% higher than that in the latter. In conclusion, the DNA vaccine vector pCMVori constructed in this study can independently replicate in eukaryotic cells. As a result, the expression level of cloned target gene was elevated, providing a basis for developing the pCMVori-based DNA vaccine.
Animals
;
Swine
;
Circovirus/genetics*
;
Vaccines, DNA/genetics*
;
Replicon/genetics*
;
Genetic Vectors/genetics*
;
Plasmids/genetics*

Result Analysis
Print
Save
E-mail