1.Mini-barcode development based on chloroplast genome of Descurainiae Semen Lepidii Semen and its adulterants and its application in Chinese patent medicine.
Hui LI ; Yu-Jie ZENG ; Xin-Yi LI ; ABDULLAH ; Yu-Hua HUANG ; Ru-Shan YAN ; Rui SHAO ; Yu WANG ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2025;50(7):1758-1769
Descurainiae Semen Lepidii Semen, also known as Tinglizi, originates from Brassicaceae plants Descurainia sophia or Lepidium apetalum. The former is commonly referred to as "Southern Tinglizi(Descurainiae Semen)", while the latter is known as "Northern Tinglizi(Lepidii Semen)". To scientifically and accurately identify the origin of Tinglizi medicinal materials and traditional Chinese medicine products, this study developed a specific DNA mini-barcode based on chloroplast genome sequences. By combining the DNA mini-barcode with DNA metabarcoding technology, a method for the qualitative and quantitative identification of Tinglizi medicinal materials and Chinese patent medicines was established. In this study, chloroplast genomes of Southern Tinglizi and Northern Tinglizi and seven commonly encountered counterfeit products were downloaded from the GenBank database. Suitable polymorphic regions were identified to differentiate these species, enabling the development of the DNA mini-barcode. Using DNA metabarcoding technology, medicinal material mixtures of Southern and Northern Tinglizi, as well as the most common counterfeit product, Capsella bursa-pastoris seeds, were analyzed to validate the qualitative and quantitative capabilities of the mini-barcode and determine its minimum detection limit. Additionally, the mini-barcode was applied to Chinese patent medicines containing Tinglizi to authenticate their botanical origin. The results showed that the developed mini-barcode(psbB) exhibited high accuracy and specificity, effectively distinguishing between the two authentic origins of Tinglizi and commonly encountered counterfeit products. The analysis of mixtures demonstrated that the mini-barcode had excellent qualitative and quantitative capabilities, accurately identifying the composition of Chinese medicinal materials in mixed samples with varying proportions. Furthermore, the analysis of Chinese patent medicines revealed the presence of the adulterant species(Capsella bursa-pastoris) in addition to the authentic species(Southern and Northern Tinglizi), indicating the occurrence of adulteration in commercially available Tinglizi-containing products. This study developed a method for the qualitative and quantitative identification of multi-origin Chinese medicinal materials and related products, providing a model for research on other multi-origin Chinese medicinal materials.
DNA Barcoding, Taxonomic/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Contamination
;
Genome, Chloroplast
;
Medicine, Chinese Traditional
2.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
3.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
4.Chinese agarwood petroleum ether extract suppressed gastric cancer progression via up-regulation of DNA damage-induced G0/G1 phase arrest and HO-1-mediated ferroptosis.
Lishan OUYANG ; Xuejiao WEI ; Fei WANG ; Huiming HUANG ; Xinyu QIU ; Zhuguo WANG ; Peng TAN ; Yufeng GAO ; Ruoxin ZHANG ; Jun LI ; Zhongdong HU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1210-1220
Gastric cancer (GC) is characterized by high morbidity and mortality rates. Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis (Lour.) Gilg., traditionally utilized for treating asthma, cardiac ischemia, and tumors. However, comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited. In this study, Chinese agarwood petroleum ether extract (CAPEE) demonstrated potent cytotoxicity against human GC cells, with half maximal inhibitory concentration (IC50) values for AGS, HGC27, and MGC803 cells of 2.89, 2.46, and 2.37 μg·mL-1, respectively, at 48 h. CAPEE significantly induced apoptosis in these GC cells, with B-cell lymphoma-2 (BCL-2) associated X protein (BAX)/BCL-2 antagonist killer 1 (BAK) likely mediating CAPEE-induced apoptosis. Furthermore, CAPEE induced G0/G1 phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid (DNA) damage-p21-cyclin D1/cyclin-dependent kinase 4 (CDK4) signaling axis, and increased Fe2+, lipid peroxides and reactive oxygen species (ROS) levels, thereby inducing ferroptosis. Ribonucleic acid (RNA) sequencing, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1 (HO-1) in human GC cells. RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells. Additionally, CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues. These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis, suggesting its potential as a candidate drug for GC treatment.
Animals
;
Humans
;
Mice
;
Antineoplastic Agents, Phytogenic
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cyclin D1/genetics*
;
Cyclin-Dependent Kinase 4/genetics*
;
DNA Damage/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Ferroptosis/drug effects*
;
G1 Phase Cell Cycle Checkpoints/drug effects*
;
Heme Oxygenase-1/genetics*
;
Mice, Inbred BALB C
;
Mice, Nude
;
Plant Extracts/pharmacology*
;
Stomach Neoplasms/physiopathology*
;
Thymelaeaceae/chemistry*
;
Up-Regulation/drug effects*
5.Genetic diversity and molecular identity of Prunus mume with both ornamental and edible values based on fluorescence-labeled simple sequence repeat (SSR) markers.
Zixu WANG ; Dan ZHOU ; Yanbei ZHAO ; Yuhang TONG ; Weijun ZHENG ; Qingwei LI
Chinese Journal of Biotechnology 2025;41(2):639-656
We studied the genetic diversity and established the DNA molecular identify for Prunus mume with both ornamental and edible values, aiming to collect, identify, evaluate, and breed new varities of this plant and promote the upgrading of the P. mume industry chain in northern China. We employed 13 pairs of primers with good polymorphism, clear bands, and good repeatability to analyze the genetic diversity and establish the molecular identify of 68 germplasm accessions of P. mume with both ornamental and edible values from Xingtai, Hebei Province. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance. After that, we analyzed the genetic structure of the 68 germplasm accessions based on a Bayesian model. The 13 pairs of SSR primers amplified a total of 124 alleles from 68 P. mume germplasm accessions, with the mean number of alleles (Na) of 9.538 5, the minor allele frequency (MAF) of 0.369 3, the mean number of effective alleles (Ne) of 4.483 5, and the mean Shannon genetic diversity index (I) of 1.712 4. The mean Nei's gene diversity index (H) of 0.763 7, the mean observed heterozygosity (Ho) of 0.719 5, the mean expected heterozygosity (He) of 0.769 3, the mean polymorphism information content (PIC) of 0.733 6, and the mean genetic similarity (GS) of 0.772 9 suggested that there were significant genetic differences and rich genetic diversity among the studied P. mume germplasm accessions. The cluster analysis revealed that the 68 accessions were classified into three groups, with the mean genetic distance of 0.622 6. The population structure analysis classified the germplasm accessions into two populations. According to the PIC of primers, we selected primers for combination and constructed the combination with the fewest primers required for germplasm differentiation of P. mume with both ornamental and edible values. This study provides a theoretical basis for the innovation and industrial upgrading of P. mume with both ornamental and edible values in gardening and the improvement of breeding efficiency.
Prunus/classification*
;
Microsatellite Repeats/genetics*
;
Genetic Variation
;
China
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Alleles
6.Epigenetics and precise crop breeding for resistance.
Chinese Journal of Biotechnology 2025;41(10):3918-3938
Epigenetics refers to a heritable phenomenon that dynamically modulates gene expression without altering the DNA sequence, through molecular mechanisms such as DNA methylation, histone modification, non-coding RNA, chromatin remodeling, and RNA modifications. In plants, these modifications are extensively involved in key biological processes, including flowering time, gametogenesis, stress responses, and immune defenses. Over the past few decades, the research on epigenetics has gradually shifted from fundamental studies primarily conducted in Arabidopsis thaliana to investigations in various crop species such as rice and tomato. This transition has revealed the multifaceted roles of epigenetic regulation in shaping agronomic traits. This review integrates current knowledge of epigenetic regulatory mechanisms and their functions in plant responses to both biotic and abiotic stresses. Epigenetic editing tools such as CRISPR-dCas9 enable targeted DNA methylation or histone acetylation. Emerging transformation technologies, including magnetic nanoparticles and virus-based delivery systems, have the potential to overcome the bottlenecks of plant regeneration, offering new possibilities for precise epigenetic editing. In future agriculture, it is essential to further elucidate multi-layered epigenetic regulatory mechanisms at the single-cell level, develop efficient delivery systems, and leverage artificial intelligence to advance the application of epigenetic breeding for sustainable agricultural development.
Epigenesis, Genetic/genetics*
;
Crops, Agricultural/genetics*
;
Plant Breeding/methods*
;
DNA Methylation/genetics*
;
Gene Editing
;
Disease Resistance/genetics*
;
CRISPR-Cas Systems
7.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
8.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
9.Mini-barcode combined with ITS2 for identification of bulk Artemisiae Scopariae Herba.
Xin-Yi LI ; Hua GUO ; Ming-Xue MA ; Liu-Wei XU ; Yu-Hua HUANG ; Yun ZHANG ; Cui-Ping YANG ; Feng HE ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2024;49(24):6685-6691
Artemisiae Scoporiae Herba is derived from Artemisia scoparia or A. capillaris. The accurate identification of the herbs, particularly when dealing with bulk samples, is critical for ensuring the quality and efficacy of the medicinal product. This study aimed to establish a comprehensive molecular approach by combining multiple markers for the precise identification of Artemisiae Scoporiae Herba. The ITS2 from A. scoparia, A. capillaris, and other common Artemisia species were retrieved from GenBank. MEGA was used to build a phylogenetic tree with these sequences, and the effectiveness of ITS2 in species identification was assessed. The analysis revealed that while ITS2 could distinguish Artemisiae Scoporiae Herba from other closely related species of Artemisia, it was insufficient to differentiate between A. scoparia and A. capillaris. To address this limitation, the chloroplast genome of A. capillaris was assembled and compared with the published chloroplast genomes of A. scoparia and A. capillaris, on the basis of which a DNA mini-barcode was developed. The rpoA-rps11 region was selected as the target for the development of mini-barcode due to its potential for distinguishing between these two species. Specific primers were designed to differentiate A. scoparia from A. capillaris. The ITS2 sequences and the newly developed mini-barcode were used together for Sanger sequencing to identify individual samples of Artemisiae Scoporiae Herba, while DNA metabarcoding was employed for the identification of bulk samples. The identification results of representative individual samples and bulk samples from different regions consistently confirmed A. capillaris. This study established a method that combined ITS2 and mini-barcode to identify bulk samples of Artemisiae Scoporiae Herba from different regions. This approach overcomes the limitations of morphological and chemical methods, enhancing species identification accuracy and supporting a stable supply of medicinal materials.
Artemisia/classification*
;
DNA Barcoding, Taxonomic/methods*
;
Phylogeny
;
DNA, Plant/genetics*
;
DNA, Ribosomal Spacer/genetics*
10.Establishment of a standard DSS library for identification of original plants of medicinal materials in Chinese Pharmacopoeia.
Duo-Mei WANG ; Chao JIANG ; Jing-Zhe PU ; Chong HU ; Ling-Li CHEN ; Ya-Zhong ZHANG ; Yuan YUAN
China Journal of Chinese Materia Medica 2024;49(23):6249-6256
With the development of molecular pharmacognosy, the advantages of DNA molecular markers in the identification of original plants of Chinese medicinal materials are becoming increasingly significant. To compensate for the limitations of existing markers in the quality supervision of Chinese medicinal materials, our team has independently designed a new molecular marker named DNA signature sequence(DSS). This marker is a nucleotide sequence that only appears in a specific taxonomic unit, with a length of 40 bp and high identification accuracy. This article aims to screen and verify the DSS markers that can accurately identify the original plants of the medicinal materials included in the volume one of the Chinese Pharmacopoeia, establish the operating procedure for developing standard nucleotide sequences, and lay a foundation for the widespread application of polymerase chain reaction in the quality supervision of traditional Chinese medicine. Firstly, the Chloroplast Genome Information Resource(CGIR) was searched for the chloroplast genome sequences of the test samples, species of the same genus, and common background species. IdenDSS was used to obtain the DSS tags and specific identification primers of the tested species. After DNA extraction, PCR amplification, sequencing, and sequence alignments, a total of 203 DSS markers of Chinese medicinal materials were obtained for validation. The above sequences were uploaded to the Traditional Chinese Medicine Molecular Identification Platform(www.herbsdna.com), and a standard DSS library was established for identifying the original plants of medicinal materials, serving as an important tool for quality supervision of Chinese materia medica. On this basis, an operating procedure for DSS development is formed, laying a foundation for further DSS screening and application based on more diverse genome sequences.
Plants, Medicinal/classification*
;
DNA, Plant/genetics*
;
Drugs, Chinese Herbal
;
Pharmacopoeias as Topic
;
Genetic Markers
;
Medicine, Chinese Traditional

Result Analysis
Print
Save
E-mail