1.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage
2.Mitochondrial genome sequence characteristics and phylogenetic analysis of Schizothorax argentatus.
Yuping LIU ; Jianyong HU ; Zijun NING ; Peiyi XIAO ; Tianyan YANG
Chinese Journal of Biotechnology 2023;39(7):2965-2985
Schizothorax argentatus that only distributes in the Ili River basin in Xinjiang is one of the rare and endangered species of schizothorax in China, thus has high scientific and economic values. In this study, the complete mitochondrial genome sequence of S. argenteus with a length of 16 580 bp was obtained by high-throughput sequencing. The gene compositions and arrangement were similar to those of typical vertebrates. It contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding region (D-loop). The nucleotide compositions were A (30.25%), G (17.28%), C (27.20%), and T (25.27%), respectively, showing obvious AT bias and anti-G bias. Among the tRNA genes, only tRNA-Ser(GCU) could not form a typical cloverleaf structure due to the lack of dihydrouracil arm. The AT-skew and GC-skew values of the ND6 gene were fluctuating the most, suggesting that the gene may experience different selection and mutation pressures from other genes. The mitochondrial control region of S. argenteus contained three different domains, i.e., termination sequence region (ETAS), central conserved region (CSB-F, CSB-E, CSB-D, and CSB-B), and conserved sequence region (CSB1, CSB2, and CSB3). The conserved sequence fragment TT (AT) nGTG, which was ubiquitous in Cypriniformes, was identified at about 50 bp downstream CSB3. Phylogenetic relationships based on the complete mitochondrial genome sequence of 28 Schizothorax species showed that S. argenteus had differentiated earlier and had a distant relationship with other species, which may be closely related to the geographical location and the hydrological environment where it lives.
Animals
;
Genome, Mitochondrial/genetics*
;
Phylogeny
;
Sequence Analysis, DNA
;
Cyprinidae/genetics*
;
RNA, Transfer/genetics*
;
DNA, Mitochondrial/genetics*
;
Genes, Mitochondrial
3.A non-invasive method for detecting mitochondrial tRNA
Zhining TANG ; Xiaowen TANG ; Ling XUE ; Minxin GUAN
Journal of Southern Medical University 2021;41(1):151-156
OBJECTIVE:
To explore the feasibility of detecting maternal hereditary mitochondrial tRNA
METHODS:
We performed sequence analysis of mitochondrial DNA in blood samples from 2070 cases of maternal hereditary mitochondrial disease in the First Affiliated Hospital of Wenzhou Medical University, and identified 3 patients with m.15927G>A mutation.Buccal swabs and blood samples were obtained from the 3 patients (mutation group) and 3 normal volunteers (control group).After extracting whole genomic DNA from all the samples, the DNA concentration and purity were analyzed.The PCR products were subjected to dot blot hybridization, Southern blot hybridization, and DNA sequencing analysis to verify the feasibility of detecting m.15927G>A mutation using buccal swabs.
RESULTS:
There was no significant difference in DNA concentration extracted from buccal swabs and blood samples in either the mutation group or the control group (
CONCLUSIONS
Buccal swabs collection accurate is an accurate and sensitive method for the detection of m.15927G>A mutation.
DNA, Mitochondrial/genetics*
;
Humans
;
Mitochondria
;
Mutation
;
RNA, Transfer
;
Sequence Analysis, DNA
4.Mitochondrial DNA Heteroplasmy of Hair Shaft Using HID Ion GeneStudioTM S5 Sequencing System.
Feng CHENG ; Qing Xia ZHANG ; Cheng Jian CHEN ; Wan Ting LI ; Jia Rong ZHANG ; Geng Qian ZHANG ; Jiang Wei YAN
Journal of Forensic Medicine 2021;37(1):21-25
Objective To study the heteroplasmy of the whole mitochondrial genome genotyping result of hair shaft samples using HID Ion GeneStudioTM S5 Sequencing System. Methods The buccal swabs and blood of 8 unrelated individuals, and hair shaft samples from different parts of the same individual were collected. Amplification of whole mitochondrial genome was performed using Precision ID mtDNA Whole Genome Panel. Analysis and detection of whole mitochondrial genome were carried out using the HID Ion GeneStudioTM S5 Sequencing System. Results The mitochondrial DNA sequences in temporal hair shaft samples from 2 individuals showed heteroplasmy, while whole mitochondrial genome genotyping results of buccal swabs, blood, and hair samples from the other 6 unrelated individuals were consistent. A total of 119 base variations were observed from the 8 unrelated individuals. The numbers of variable sites of the individuals were 29, 40, 38, 35, 13, 36, 40 and 35, respectively. Conclusion Sequence polymorphism can be fully understood using HID Ion GeneStudioTM S5 Sequencing system.
DNA, Mitochondrial/genetics*
;
Genome, Mitochondrial/genetics*
;
Heteroplasmy
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Sequence Analysis, DNA
5.Mutational analysis of 117 patients with non-syndromic hearing loss.
Leilei WANG ; Ying GU ; Shuting YANG ; Huafen MAO ; Xinxin TANG ; Tianlong XU ; Min WU ; Yuhua SUN ; Xiucui LUO
Chinese Journal of Medical Genetics 2019;36(2):108-111
OBJECTIVE:
To determine the frequencies of deafness gene mutations among patients with non-syndromic hearing loss (NSHL) from northern Jiangsu province.
METHODS:
A total of 117 patients with NSHL were enrolled. The coding region of GJB2 gene, IVS7-2A>G and 2168A>G mutations of SLC26A4 gene, and 1555A>G and 1494C>T mutations of mitochondrial DNA 12S rRNA were subjected to Sanger sequencing. Patients in whom no mutation was detected were further tested by targeted gene capture and high-throughput sequencing.
RESULTS:
Among the 117 patients, 86 (73.50%) were found to carry mutations. GJB2 gene mutations were found in 61 patients (52.14%), including 22 (18.80%) with homozygous mutations and 39 (33.33%) with heterozygous mutations. SLC26A4 gene mutations were found in 19 patients (16.24%), including 4 (3.42%) with homozygous mutations and 15 with heterozygous mutations (14.53%). Mitochondrial 12S rRNA gene mutation was found in 6 patients (5.13%). Targeted gene capture and high-throughput sequencing of 8 patients identified 4 further cases, including 1 with RDX gene 129_130del and 76_79del compound heterozygous mutations, 1 with OTOF gene 1274G>C homozygous mutation, 1 with SLC26A4 gene 919-2A>G and IVS16-6G>A compound heterozygous mutation, and 1 with SLC26A4 gene 919-2A>G and A1673T compound heterozygous mutation.
CONCLUSION
The frequency of mutation among patients with NSHL from north Jiangsu was 73.50%, and GJB2 gene was most commonly mutated.
China
;
Connexins
;
DNA Mutational Analysis
;
DNA, Mitochondrial
;
Hearing Loss
;
genetics
;
Humans
;
Membrane Proteins
;
Mutation
;
Sulfate Transporters
6.Analysis of 28S rRNA and COⅠ Gene Sequence of Nine Necrophagous Calliphorid Flies from Luoyang.
Lin Lin ZHAO ; Xian Dun ZHAI ; Zhe ZHENG ; Zhou LÜ ; Yong Lin LI ; Yao Nan MO
Journal of Forensic Medicine 2019;35(2):181-186
Objective To assess the feasibility of using 28S ribosomal RNA (28S rRNA) and mitochondrial cytochrome c oxidase subunit Ⅰ (COⅠ) gene sequences of nine necrophagous Calliphorid flies for the identification of common necrophagous Calliphorid flies, and to provide technical support for postmortem interval (PMI) estimation. Methods Twenty-three Calliphorid flies were collected and identified morphologically, and DNA were extracted from legs. The gene fragments of 28S rRNA and COⅠ were amplified and sequenced, then the sequence alignment was performed with BLAST. The composition of obtained sequences was analyzed and evolutionary divergence rate between species and intraspecies were established. The phylogeny tree was constructed with neighbor-joining method. Results The 23 necrophagous Calliphorid flies were identified to 9 species of 5 genera. The 715 bp from 28S rRNA and 637 bp from COⅠ gene were obtained and the online BLAST result showed more than 99% of similarity. The phylogeny tree showed that the necrophagous flies could cluster well into 9 groups, which was consistent with morphological identification results. The intraspecific difference in 28S rRNA was 0 and the interspecific difference was 0.001-0.033. The intraspecific difference in COⅠ was 0-0.008 and the interspecific difference was 0.006-0.101. Conclusion Combined use of 28S rRNA and COⅠ gene sequence fragments can effectively identify the nine Calliphorid flies in this study. However, for closely related blowfly species, more genetic markers should be explored and used in combination in future.
Animals
;
DNA, Mitochondrial/genetics*
;
Diptera/genetics*
;
Phylogeny
;
RNA, Ribosomal, 28S/genetics*
;
Sequence Analysis, DNA
;
Species Specificity
7.Mutational analysis of ASS1, ASL and SLC25A13 genes in six Chinese patients with citrullinemia.
Yiming LIN ; Ke YU ; Lufeng LI ; Zhenzhu ZHENG ; Weihua LIN ; Qingliu FU
Chinese Journal of Medical Genetics 2017;34(5):676-679
OBJECTIVETo detect potential mutations in six patients with citrullinemia.
METHODSGenomic DNA was extracted from peripheral blood samples from the patients. Mutations of the ASS1, ASL and SLC25A13 genes were screened using microarray genotyping combined with direct sequencing.
RESULTSOne patient was diagnosed with argininosuccinate lyase deficiency, and has carried a homozygous c.1311T>G (p.Y437*) mutation of the ASL gene. The remaining five patients were diagnosed with neonatal intrahepatic cholestasis due to citrin deficiency, and have respectively carried mutations of the SLC25A13 gene including [c.851-854delGTAT+c.851-854delGTAT], [c.851-854delGTAT+IVS6+5G>A], [c.851-854delGTAT+IVS16ins3kb], [c.851-854delGTAT+IVS6-11A>G] and [c.851-854delGTAT+c.1638-1660dup23]. Among these, the c.1311T>G mutation was first identified in the Chinese population, and the IVS6-11A>G mutation was a novel variation which may affect the splicing, as predicted by Human Splicing Finder software.
CONCLUSIONThis study has confirmed the molecular diagnosis of citrullinemia in six patients and expanded the mutational spectrum underlying citrullinemia.
Argininosuccinate Lyase ; genetics ; Argininosuccinate Synthase ; genetics ; Citrullinemia ; genetics ; DNA Mutational Analysis ; Female ; Humans ; Infant ; Infant, Newborn ; Male ; Mitochondrial Membrane Transport Proteins ; genetics ; Mutation
8.Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia.
Min Gu KANG ; Yu Na KIM ; Jun Hyung LEE ; Michael SZARDENINGS ; Hee Jo BAEK ; Hoon KOOK ; Hye Ran KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(2):101-110
BACKGROUND: To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. METHODS: Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. RESULTS: mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. CONCLUSIONS: The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML.
Bone Marrow Cells/metabolism
;
Case-Control Studies
;
Child
;
Cohort Studies
;
DNA, Mitochondrial/chemistry/genetics/metabolism
;
Female
;
Flow Cytometry
;
Gene Deletion
;
Gene Dosage
;
*Genome, Mitochondrial
;
Humans
;
Leukemia, Myeloid, Acute/genetics/mortality/*pathology
;
Male
;
Membrane Potential, Mitochondrial
;
Minisatellite Repeats/genetics
;
Odds Ratio
;
Reactive Oxygen Species/metabolism
;
Sequence Analysis, DNA
;
Survival Rate
9.A novel technique for simultaneous multi-gene mutation screening in 225 patients with nonsyndromic hearing loss.
Di ZHANG ; Hong DUAN ; Peng LIN ; Jing CHENG ; Cuicui WANG ; Yuanxu MA ; Yan CHENG ; Hui ZHAO ; Wei WANG ; Kaixu XU ; Dongyi HAN ; Huijun YUAN ;
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2016;51(3):203-208
OBJECTIVEUsing simultaneous multi-gene mutation screening to investigate the new method molecular epidemiological basis of 225 patients with nonsyndromic hearing loss in Tianjin, and verifying the for simultaneous multi-gene mutation screening.
METHODSTwo hundred and twenty-five patients with severe non-syndromic deafness from Tianjin CDPF and Association of the Deaf were included in the study. The single nucleotide polymorphisms scan, (SNPscan) technique was used for screening the 115 spots mutations in three common deafness-related genes (GJB2, SLC26A4, mtDNA 12S rRNA) of patients with nonsyndromic hearing loss in Tianjin. We verified the results by Sanger sequencing.
RESULTSAmong the 225 patients, there were 111 cases of deafness caused by mutation (49.3%). Using this method, up to 50% of the patients in our study were identified to have hereditary HL caused by mutations in the three genes. 56 patients with the GJB2 mutations were detected (24.9%), including 30 cases of homozygous mutations (13.3%), 26 patients (11.6%) of compound heterozygous mutations, and 21 cases (9.33%) of single heterozygous mutations. 50 patients with the SLC26A4 mutations were detected (22.2%), including 22 cases of homozygous mutations(9.8%), 28 patients (12.4%) of compound heterozygous mutations, and 22 cases (9.8%) of single heterozygous mutations. mtDNA 12S rRNA A1555G mutation was detected in 5 patients (2.2%). mtDNA 12S rRNA 1494C>T mutation was not detected. We verified the results by Sanger sequencing. The accuracy of the sequencing results was 100%. The SNPscan cost eight hours and 160 yuan (each sample).
CONCLUSIONSApplying SNPscan technology can be accurate, rapid and cost-effective diagnostic screening in patients with hearing loss for etiology investigation. It is expected to become an effective means of large-scale genetic testing for hereditary deafness.
Connexin 26 ; Connexins ; genetics ; DNA Mutational Analysis ; methods ; DNA, Mitochondrial ; genetics ; Deafness ; genetics ; Genetic Testing ; methods ; Heterozygote ; Homozygote ; Humans ; Membrane Transport Proteins ; genetics ; Mutation ; Polymorphism, Single Nucleotide ; RNA, Ribosomal ; genetics
10.Rapid screening of MT3243A>G mutation in mitochondrial diabetes with high resolution melting curve analysis and pyrosequencing.
Xinjun WEI ; ; crwang@sjtu.edu.cn. ; Xiujuan DU ; Congrong WANG ; Jingbin YAN
Chinese Journal of Medical Genetics 2016;33(4):447-451
OBJECTIVETo establish a rapid, accurate, noninvasive and low cost method for screening MT3243A>G mutation in mitochondrial diabetes.
METHODSBlood, saliva, and urine sediment samples were collected from 6 patients with confirmed mitochondrial diabetes and 50 healthy controls from Shanghai Children's Hospital and Shanghai Sixth People's Hospital. The heterozygosity levels of MT3243A>G mutation in above samples were detected with pyrosequencing, and the data were compared. MT3243A>G mutations were rapidly screened with high resolution melting curve analysis (HRM) in the urine sediment samples of 1070 diabetic patients from 4 communities in Shanghai. Furthermore, pyrosequencing was used to validate the suspected positive samples, and the heterozygosity levels were also quantified.
RESULTSComparative experiments found that heterozygosity of MT3243A>G mutation was 2 to 7 times higher in urine sediment than in saliva and blood samples from the 6 patients with confirmed mitochondrial diabetes. However, the heterozygosity was slightly higher in saliva than blood samples. MT3243A>G mutation was not detected in the 50 healthy controls. Two samples with suspected MT3243A>G mutation were identified in the 1070 urine sediment samples of diabetes patients with HRM screening, which were validated by pyrosequencing. The heterozygosity of MT3243A>G mutation were 33.32% and 14.67% in the urine sediment samples, respectively.
CONCLUSIONUrine sediment samples can be used for rapid screening of MT3243A>G mutation for its ease to collect, noninvasiveness and higher level of heterozygosity. HRM is suitable for rapid screening for mitochondrian mutations for its low cost, while such mutations could be detected with sensitivity and accuracy by pyrosequencing.
DNA, Mitochondrial ; genetics ; Diabetes Mellitus ; genetics ; Heterozygote ; Humans ; Mutation ; Sequence Analysis, DNA ; methods ; Transition Temperature

Result Analysis
Print
Save
E-mail