1.Return-to-work among COVID-19 survivors in the Philippines and the role of rehabilitation: A mixed-method design
Michael P. Sy ; Roi Charles S. Pineda ; Daryl Patrick G. Yao ; Hans D. Togonon ; Eric Asaba
Acta Medica Philippina 2025;59(Early Access 2025):1-12
BACKGROUND
A substantial number of COVID-19 recoverees are working-aged individuals, which makes return-towork (RTW) an essential part of rehabilitation. Many COVID-19 recoverees must deal with physical and mental symptoms of post-COVID conditions such as fatigue, dyspnea, difficulty concentrating, memory lapses, and anxiety. These symptoms coupled with often insufficient support from employers and the government can make the RTW process complicated. Although research related to RTW after COVID-19 has begun to emerge over the years, few primary studies have come out from developing countries.
OBJECTIVESThis exploratory study aims to describe perceived work ability and health-related quality of life, lived experiences of the RTW process, and role of rehabilitation in a limited sample of Filipino COVID-19 recoverees.
METHODSUsing purposive sampling and a convergent parallel mixed-method design, the study draws on an online survey and group interviews to understand expectations, experiences, and self-rated work ability of working-age adults with post-COVID condition. We report the findings of the questionnaire data using descriptive statistics. From the questionnaire respondents, eight participants were interviewed to explore the RTW experiences from multiple perspectives. The group interview was conducted online, and narrative analysis was used to explore the data. This analytic process involved an iterative and inductive process between data gathering and data analysis.
RESULTSFindings from our narrative analysis are reported under four themes: 1) The period of liminality; 2) A ‘positive’ problem; 3) Health as a psychosocial and justice issue; and 4) The reimagination of paid work. The narratives gathered document an overview of how selected Filipinos overcame the COVID-19 infection and their recovery and RTW process.
CONCLUSIONResults call for a re-examination of the concept of health and paid work for individuals undergoing rehabilitation and recovery.
Human ; Pandemics ; Rehabilitation, Vocational ; Occupational Therapy
2.Return-to-work among COVID-19 survivors in the Philippines and the role of rehabilitation: A mixed-method design.
Michael P. SY ; Roi Charles S. PINEDA ; Daryl Patrick G. YAO ; Hans D. TOGONON ; Eric ASABA
Acta Medica Philippina 2025;59(20):60-71
BACKGROUND
A substantial number of COVID-19 recoverees are working-aged individuals, which makes return-towork (RTW) an essential part of rehabilitation. Many COVID-19 recoverees must deal with physical and mental symptoms of post-COVID conditions such as fatigue, dyspnea, difficulty concentrating, memory lapses, and anxiety. These symptoms coupled with often insufficient support from employers and the government can make the RTW process complicated. Although research related to RTW after COVID-19 has begun to emerge over the years, few primary studies have come out from developing countries.
OBJECTIVESThis exploratory study aims to describe perceived work ability and health-related quality of life, lived experiences of the RTW process, and role of rehabilitation in a limited sample of Filipino COVID-19 recoverees.
METHODSUsing purposive sampling and a convergent parallel mixed-method design, the study draws on an online survey and group interviews to understand expectations, experiences, and self-rated work ability of working-age adults with post-COVID condition. We report the findings of the questionnaire data using descriptive statistics. From the questionnaire respondents, eight participants were interviewed to explore the RTW experiences from multiple perspectives. The group interview was conducted online, and narrative analysis was used to explore the data. This analytic process involved an iterative and inductive process between data gathering and data analysis.
RESULTSFindings from our narrative analysis are reported under four themes: 1) The period of liminality; 2) A ‘positive’ problem; 3) Health as a psychosocial and justice issue; and 4) The reimagination of paid work. The narratives gathered document an overview of how selected Filipinos overcame the COVID-19 infection and their recovery and RTW process.
CONCLUSIONResults call for a re-examination of the concept of health and paid work for individuals undergoing rehabilitation and recovery.
Human ; Pandemics ; Rehabilitation, Vocational ; Occupational Therapy
3.Identification of Zg02 metabolites in rats by UPLC-Q-TOF/MSE
Man ZHANG ; Rui CHEN ; Ke-rong HU ; Yao CHENG ; Jing HUANG
Acta Pharmaceutica Sinica 2024;59(8):2305-2312
In this study, plasma, urine and fecal samples were collected from rats after intragastric administration of novel insulin sensitizer Zg02 (20 mg·kg-1). The ultra-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry (UPLC-Q-TOF/MSE) techniques was used to obtain the molecular ion and mass spectrometry fragment ion information of the compound, and the metabolites were quickly analyzed by combining with UNIFI metabolite software. The results showed that a total of 12 metabolites were inferred in rats after a single gavage of Zg02 (20 mg·kg-1), including 5, 7 and 11 metabolites in plasma, urine and feces (including cross-analysis), and the metabolic pathways were mainly glucuronidation and glucosylation. All animal protocols were approved by the Animal Ethics Committee of Guizhou Medical University (No. 2100856).
4.Identification of cajanonic acid A metabolites in rats by UPLC-Q-TOF-MS/MS
Yao CHENG ; Yu-juan BAN ; Rui CHEN ; Li ZHANG ; Ke-rong HU ; Jing HUANG
Acta Pharmaceutica Sinica 2024;59(5):1382-1390
This research established a simple, rapid and sensitive ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method to investigate the metabolic profiles of cajanonic acid A (CAA) in rats. After intragastric administration of CAA (30 mg·kg-1) to rats, the biological samples were detected by UPLC-Q-TOF-MS/MS. Relevant data was collected and processed, the accurate mass and MS2 spectra of the metabolites were compared with the parent compound. As a result, a total of 23 metabolites were detected, including 15 in urine, 11 in bile, 11 in feces, and 9 in plasma. The major metabolic pathways related to CAA included dehydrogenation, reduction, hydroxylation, methylation and glucuronide conjugation. This experiment was approved by Animal Ethics Committee of Guizhou Medical University (approval number: 1603137).
5.Interpretation and Elaboration for the ARRIVE Guidelines 2.0—Animal Research: Reporting In Vivo Experiments (V)
Zhengwen MA ; Xiaying LI ; Xiaoyu LIU ; Yao LI ; Jian WANG ; Jin LU ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xuancheng LU ; Yonggang LIU ; Yufeng TAO ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2024;44(1):105-114
Improving the reproducibility of biomedical research results is a major challenge. Transparent and accurate reporting of the research process enables readers to evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist that is applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as enhance the reliability, repeatability, and clinical translation of animal experimental results. The use of the ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and completeness of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is based on the best practices following the ARRIVE 2.0 guidelines in international journals, and it interprets, explains, and elaborates in Chinese the fifth part of the comprehensive version of the ARRIVE 2.0 guidelines published in PLoS Biology in 2020 (the original text can be found at
6.Fexaramine improves non-alcoholic fatty liver disease in mice by stimulating intestinal FXR
Lu-yao HUANG ; Qiong-wen XUE ; Yi-xuan LUO ; Zi-xuan WANG ; Jia-rui JIANG ; Shu-yang XU ; Li YANG ; Zheng-tao WANG ; Li-li DING
Acta Pharmaceutica Sinica 2023;58(11):3330-3338
Non-alcoholic fatty liver disease (NAFLD) is considered to be a manifestation of metabolic syndrome and has become one of the chronic diseases that endanger health around the world. There is still a lack of effective therapeutic drugs in clinical practice. Farnesoid X receptor (FXR) has been a popular target for NAFLD research in recent years. Fexaramine (Fex) is a potent and selective agonist of FXR, and its mechanism of action to improve NAFLD is unclear. Therefore, in this study, a mouse model of NAFLD was constructed using a high-fat, high-cholesterol diet and treated with Fex orally for 6 weeks. We evaluated the ameliorative effect of Fex on disorders of glucolipid metabolism in NAFLD mice, and preliminarily explored its potential mechanism of action. The animal experiments were approved by the Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine (approval number: PZSHUTCM210913011). In this study, it was found that 100 mg·kg-1 Fex significantly inhibited body weight gain, alleviated insulin resistance, improved liver injury and lipid accumulation in NAFLD mice. The effect of Fex on the expression of hepatic intestinal FXR and its target genes in NAFLD mice was further examined. Analysis of serum and hepatic bile acid profiles and expression related to hepatic lipid metabolism. It was found that Fex could stimulate intestinal FXR, promote fibroblast growth factor 15 (FGF15) secretion, inhibit the expression of cytochrome P450 family 7 subfamily A member 1 (CYP7A1), the rate-limiting enzyme of bile acid synthesis in liver, regulate bile acid synthesis by negative feedback, and improve the disorder of bile acid metabolism. At the same time, Fex reduces liver lipid synthesis and absorption, increases fatty acid oxidation, thus improving liver lipid metabolism. This study shows that Fex can improve NAFLD by activating intestinal FXR-FGF15 signal pathway and regulating liver lipid metabolism.
7.Platelet RNA enables accurate detection of ovarian cancer: an intercontinental, biomarker identification study.
Yue GAO ; Chun-Jie LIU ; Hua-Yi LI ; Xiao-Ming XIONG ; Gui-Ling LI ; Sjors G J G IN 'T VELD ; Guang-Yao CAI ; Gui-Yan XIE ; Shao-Qing ZENG ; Yuan WU ; Jian-Hua CHI ; Jia-Hao LIU ; Qiong ZHANG ; Xiao-Fei JIAO ; Lin-Li SHI ; Wan-Rong LU ; Wei-Guo LV ; Xing-Sheng YANG ; Jurgen M J PIEK ; Cornelis D DE KROON ; C A R LOK ; Anna SUPERNAT ; Sylwia ŁAPIŃSKA-SZUMCZYK ; Anna ŁOJKOWSKA ; Anna J ŻACZEK ; Jacek JASSEM ; Bakhos A TANNOUS ; Nik SOL ; Edward POST ; Myron G BEST ; Bei-Hua KONG ; Xing XIE ; Ding MA ; Thomas WURDINGER ; An-Yuan GUO ; Qing-Lei GAO
Protein & Cell 2023;14(6):579-590
Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.
Humans
;
Female
;
Blood Platelets/pathology*
;
Biomarkers, Tumor/genetics*
;
Ovarian Neoplasms/pathology*
;
China
8.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅳ)
Xiaying LI ; Yonglu TIAN ; Xiaoyu LIU ; Xuancheng LU ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Jing GAO ; Yao LI ; Yufeng TAO ; Wanyong PANG ; Yusheng WEI
Laboratory Animal and Comparative Medicine 2023;43(6):659-668
Improving the reproducibility of biomedical research results is a major challenge.Transparent and accurate reporting of the research process enables readers to evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
9.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅲ)
Xiaoyu LIU ; Xuancheng LU ; Xiaomeng SHI ; Yuzhou ZHANG ; Chao LÜ ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Jing GAO ; Yao LI ; Yonggang LIU ; Yufeng TAO ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(4):446-456
Improving the reproducibility of biomedical research results is a major challenge.Researchers reporting their research process transparently and accurately can help readers evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
10.Explanation and Elaboration of the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅱ)
Guoyuan CHEN ; Xiao LU ; Yu BAI ; Lingzhi YU ; Ying QIAO ; Jian WANG ; Jin LU ; Xiaoyu LIU ; Xuancheng LU ; Jing GAO ; Yao LI ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(3):323-331
Improving the reproducibility of biomedical research results remains a major challenge. Transparent and accurate reporting of progress can help readers evaluate the reliability of research results and further explore an experiment by repeating or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of the ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is the second part of the Chinese translation of the complete interpretation of the ARRIVE 2.0 guidelines published in PLoS Biology in 2020 (original text can be found at


Result Analysis
Print
Save
E-mail