1.Interpretation and Elaboration for the ARRIVE Guidelines 2.0—Animal Research: Reporting In Vivo Experiments (V)
Zhengwen MA ; Xiaying LI ; Xiaoyu LIU ; Yao LI ; Jian WANG ; Jin LU ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xuancheng LU ; Yonggang LIU ; Yufeng TAO ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2024;44(1):105-114
Improving the reproducibility of biomedical research results is a major challenge. Transparent and accurate reporting of the research process enables readers to evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist that is applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as enhance the reliability, repeatability, and clinical translation of animal experimental results. The use of the ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and completeness of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is based on the best practices following the ARRIVE 2.0 guidelines in international journals, and it interprets, explains, and elaborates in Chinese the fifth part of the comprehensive version of the ARRIVE 2.0 guidelines published in PLoS Biology in 2020 (the original text can be found at
2.Platelet RNA enables accurate detection of ovarian cancer: an intercontinental, biomarker identification study.
Yue GAO ; Chun-Jie LIU ; Hua-Yi LI ; Xiao-Ming XIONG ; Gui-Ling LI ; Sjors G J G IN 'T VELD ; Guang-Yao CAI ; Gui-Yan XIE ; Shao-Qing ZENG ; Yuan WU ; Jian-Hua CHI ; Jia-Hao LIU ; Qiong ZHANG ; Xiao-Fei JIAO ; Lin-Li SHI ; Wan-Rong LU ; Wei-Guo LV ; Xing-Sheng YANG ; Jurgen M J PIEK ; Cornelis D DE KROON ; C A R LOK ; Anna SUPERNAT ; Sylwia ŁAPIŃSKA-SZUMCZYK ; Anna ŁOJKOWSKA ; Anna J ŻACZEK ; Jacek JASSEM ; Bakhos A TANNOUS ; Nik SOL ; Edward POST ; Myron G BEST ; Bei-Hua KONG ; Xing XIE ; Ding MA ; Thomas WURDINGER ; An-Yuan GUO ; Qing-Lei GAO
Protein & Cell 2023;14(6):579-590
Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.
Humans
;
Female
;
Blood Platelets/pathology*
;
Biomarkers, Tumor/genetics*
;
Ovarian Neoplasms/pathology*
;
China
3.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅳ)
Xiaying LI ; Yonglu TIAN ; Xiaoyu LIU ; Xuancheng LU ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Jing GAO ; Yao LI ; Yufeng TAO ; Wanyong PANG ; Yusheng WEI
Laboratory Animal and Comparative Medicine 2023;43(6):659-668
Improving the reproducibility of biomedical research results is a major challenge.Transparent and accurate reporting of the research process enables readers to evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
4.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅲ)
Xiaoyu LIU ; Xuancheng LU ; Xiaomeng SHI ; Yuzhou ZHANG ; Chao LÜ ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Jing GAO ; Yao LI ; Yonggang LIU ; Yufeng TAO ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(4):446-456
Improving the reproducibility of biomedical research results is a major challenge.Researchers reporting their research process transparently and accurately can help readers evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
5.Explanation and Elaboration of the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅱ)
Guoyuan CHEN ; Xiao LU ; Yu BAI ; Lingzhi YU ; Ying QIAO ; Jian WANG ; Jin LU ; Xiaoyu LIU ; Xuancheng LU ; Jing GAO ; Yao LI ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(3):323-331
Improving the reproducibility of biomedical research results remains a major challenge. Transparent and accurate reporting of progress can help readers evaluate the reliability of research results and further explore an experiment by repeating or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of the ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is the second part of the Chinese translation of the complete interpretation of the ARRIVE 2.0 guidelines published in PLoS Biology in 2020 (original text can be found at
6.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅰ)
Jian WANG ; Jin LU ; Zhengwen MA ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xiaoyu LIU ; Xuancheng LU ; Jing GAO ; Yao LI ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(2):213-224
Improving the reproducibility of biomedical research results is a major challenge. Researchers reporting their research process transparently and accurately can help readers evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. this article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
7.Introduction to the International Guide for Animal Research Reporting ARRIVE 2.0, and Its Implementation Plan in the Journal
Junyan ZHANG ; Xiaoyu LIU ; Yao LI ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xuancheng LU ; Wanyong PANG ; Baojin WU
Laboratory Animal and Comparative Medicine 2023;43(1):86-94
Animal experiments play an important role in the process of biomedical research, and is a necessary way to transform basic medicine into clinical medicine. The standardization of animal experimental studies and reports determines the reliability and reproducibility of research results, and is also the key to transforming the results of animal experiments into clinical trials. In view of how to design and implement animal experiments, write animal experiment reports, and publish relevant academic papers in a more standardized way, LACM (Laboratory Animal and Comparative Medicine) has launched a new column of comparative medical research and reporting standards from 2023, focusing on the introduction and interpretation of international general norms related to laboratory animal and comparative medicine, such as ARRIVE 2.0 guidelines (Animal Research: Reporting of In Vivo Experiments). This article focuses on the development and application, basic content and priority of ARRIVE 2.0, as well as the scheme of implementing ARRIVE 2.0 guidelines in international biomedical journals, and explains the current situation and future plans of LACM following ARRIVE 2.0 guidelines. The research and report of animal experimental medicine following the ARRIVE 2.0 guidelines and other international norms is one of the important driving forces to promote the high-quality development of experimental animal science and biomedicine in China, and also a powerful means to implement the 3R principle and improve the welfare of laboratory animals. Through this article, we hope the majority of scientific researchers and editors will attach great importance and actively implement these international standards.
8.Nodal T-follicular helper cell lymphoma, angioimmunoblastic-type associated with diffuse large B-cell lymphoma: a clinicopathological study.
G N WANG ; W G ZHAO ; D D ZHANG ; Y P ZHANG ; E J LIU ; S S LU ; W C LI
Chinese Journal of Pathology 2023;52(9):918-923
Objective: To investigate the clinicopathological features and molecular genetics of diffuse large B-cell lymphomas (DLBCL) with concurrent or secondary to nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (nTFHL-AI). Methods: The clinicopathological features and molecular genetics of DLBCL associated with nTFHL-AI diagnosed between January 2015 and October 2022 at the First Affiliated Hospital of Zhengzhou University were analyzed using histology, immunohistochemistry, PCR, EBV-encoded RNA in situ hybridization and fluorescence in situ hybridization (FISH). Clinical information was collected and analyzed. Results: A total of 6 cases including 3 nTFHL-AI with secondary DLBCL and 3 composite lymphomas were reviewed. There were 4 male and 2 female patients, whose ages ranged from 40 to 74 years (median 57 years). All patients presented with nodal lesions at an advanced Ann Arbor stage Ⅲ/Ⅳ (6/6). Bone marrow involvement was detected in 4 patients. All cases showed typical histologic and immunophenotypic characteristics of nTFHL-AI. Among them, 5 cases of DLBCL with concurrent nTFHL-AI exhibited numerous large atypical lymphoid cells and the tumor cells were CD20 and CD79α positive. The only case of DLBCL secondary to nTFHL-AI showed plasma cell differentiation and reduced expression of CD20. All of cases were activated B-cell (ABC)/non-germinal center B-cell (non-GCB) subtype. Three of the 6 cases were EBV positive with>100 positive cells/high power field, meeting the diagnostic criteria of EBV+DLBCL. The expression of MYC and CD30 protein in the DLBCL region was higher than that in the nTFHL-AI region (n=5). C-MYC, bcl-6 and bcl-2 translocations were not detected in the 4 cases that were subject to FISH. Four of the 6 patients received chemotherapy after diagnosis. For the DLBCL cases of nTFHL-AI with secondary DLBCL, the interval was between 2-20 months. During the follow-up period ranging from 3-29 months, 3 of the 6 patients died of the disease. Conclusions: DLBCL associated with nTFHL-AI is very rare. The expansion of EBV-infected B cells in nTFHL-AI may progress to secondary EBV+DLBCL. However, EBV-negative cases have also been reported, suggesting possible other mechanisms. The up-regulation of MYC expression in these cases suggests a possible role in B-cell lymphomagenesis. Clinicians should be aware that another biopsy is still necessary to rule out concurrent or secondary DLBCL when nodal and extranodal lesions are noted after nTFHL-AI treatment.
Female
;
Male
;
Humans
;
In Situ Hybridization, Fluorescence
;
Lymphoma, Large B-Cell, Diffuse
;
B-Lymphocytes
;
Biopsy
;
T-Lymphocytes, Helper-Inducer
9.Differential expression of LLGL2 in prostate ductal adenocarcinoma and acinar adenocarcinoma and its significance.
W ZHANG ; M WANG ; L T LIU ; D CUI ; M LIU ; D G LIU
Chinese Journal of Pathology 2023;52(10):1012-1016
Objective: To investigate the expression differences of LLGL2 between prostatic ductal adenocarcinoma (PDA) and prostatic acinar adenocarcinoma, and its potential clinical significance. Methods: Eighteen patients diagnosed of PDA or prostatic acinar adenocarcinoma with PDA component by histopathology during January 2015 and December 2019 in the Beijing Hospital, China were retrospectively studied. The transcriptome analysis was conducted using the tissue of PDA and prostatic acinar adenocarcinoma. Differentially expressed genes and the differences in expression profiles were identified. Further, differentially expressed proteins were verified by immunohistochemistry. Results: The tissue from 8 of the 18 patients were used for transcriptome analysis, the results of which were compared with data from public databases. 129 differentially expressed genes were identified. 45 of them were upregulated while 84 were downregulated. The results of gene enrichment analysis and gene oncology (GO) analysis revealed that the differentially expressed genes were mostly enriched in the hypertrophic cardiomyopathy and interleukin-17 related pathways. GPAT2, LLGL2, MAMDC4, PCSK9 and SMIM6 were differentially expressed between PDA and prostatic acinar adenocarcinoma. Moreover, LLGL2 was more likely expressed in the cytoplasm (P=0.04) than the nucleus (P<0.01) in PDA, compared with prostatic acinar adenocarcinoma. Conclusions: The gene expression profiling indicates that PDA are very similar to prostatic acinar adenocarcinoma. Among the differentially expressed proteins screened and verified in this study, the expression of GPAT2, LLGL2, MAMDC4 and PCSK9 is increased in PDA, while that of SMIM6 is reduced in PDA. The expression of LLGL2 shows significantly different patterns between PDA and prostatic acinar carcinoma, and thus may help differentiate PDA from prostatic acinar adenocarcinoma in clinical practice.
Male
;
Humans
;
Carcinoma, Acinar Cell/pathology*
;
Proprotein Convertase 9
;
Prostate/pathology*
;
Retrospective Studies
;
Prostatic Neoplasms/metabolism*
10.Development and validation of a prognostic prediction model for patients with stage Ⅰ to Ⅲ colon cancer incorporating high-risk pathological features.
K X LI ; Q B WU ; F Q ZHAO ; J L ZHANG ; S L LUO ; S D HU ; B WU ; H L LI ; G L LIN ; H Z QIU ; J Y LU ; L XU ; Z WANG ; X H DU ; L KANG ; X WANG ; Z Q WANG ; Q LIU ; Y XIAO
Chinese Journal of Surgery 2023;61(9):753-759
Objective: To examine a predictive model that incorporating high risk pathological factors for the prognosis of stage Ⅰ to Ⅲ colon cancer. Methods: This study retrospectively collected clinicopathological information and survival outcomes of stage Ⅰ~Ⅲ colon cancer patients who underwent curative surgery in 7 tertiary hospitals in China from January 1, 2016 to December 31, 2017. A total of 1 650 patients were enrolled, aged (M(IQR)) 62 (18) years (range: 14 to 100). There were 963 males and 687 females. The median follow-up period was 51 months. The Cox proportional hazardous regression model was utilized to select high-risk pathological factors, establish the nomogram and scoring system. The Bootstrap resampling method was utilized for internal validation of the model, the concordance index (C-index) was used to assess discrimination and calibration curves were presented to assess model calibration. The Kaplan-Meier method was used to plot survival curves after risk grouping, and Cox regression was used to compare disease-free survival between subgroups. Results: Age (HR=1.020, 95%CI: 1.008 to 1.033, P=0.001), T stage (T3:HR=1.995,95%CI:1.062 to 3.750,P=0.032;T4:HR=4.196, 95%CI: 2.188 to 8.045, P<0.01), N stage (N1: HR=1.834, 95%CI: 1.307 to 2.574, P<0.01; N2: HR=3.970, 95%CI: 2.724 to 5.787, P<0.01) and number of lymph nodes examined (≥36: HR=0.438, 95%CI: 0.242 to 0.790, P=0.006) were independently associated with disease-free survival. The C-index of the scoring model (model 1) based on age, T stage, N stage, and dichotomous variables of the lymph nodes examined (<12 and ≥12) was 0.723, and the C-index of the scoring model (model 2) based on age, T stage, N stage, and multi-categorical variables of the lymph nodes examined (<12, 12 to <24, 24 to <36, and ≥36) was 0.726. A scoring system was established based on age, T stage, N stage, and multi-categorical variables of lymph nodes examined, the 3-year DFS of the low-risk (≤1), middle-risk (2 to 4) and high-risk (≥5) group were 96.3% (n=711), 89.0% (n=626) and 71.4% (n=313), respectively. Statistically significant difference was observed among groups (P<0.01). Conclusions: The number of lymph nodes examined was an independent prognostic factor for disease-free survival after curative surgery in patients with stage Ⅰ to Ⅲ colon cancer. Incorporating the number of lymph nodes examined as a multi-categorical variable into the T and N staging system could improve prognostic predictive validity.
Male
;
Female
;
Humans
;
Prognosis
;
Neoplasm Staging
;
Retrospective Studies
;
Nomograms
;
Lymph Nodes/pathology*
;
Risk Factors
;
Colonic Neoplasms/surgery*

Result Analysis
Print
Save
E-mail