1.Clinical Value of Translocator Protein Gene in Evaluating the Efficacy of FLT3-ITD/DNMT3A R882 Double-Mutated Acute Myeloid Leukemia.
Shan-Hao TANG ; Ying LU ; Pi-Sheng ZHANG ; Dong CHEN ; Xu-Hui LIU ; Xiao-Hong DU ; Jun-Jie CAO ; Shuang-Yue LI ; Ke-Ya SHA ; Lie-Guang CHEN ; Xian-Xu ZHUANG ; Pei-Pei YE ; Li LIN ; Ren-Zhi PEI
Journal of Experimental Hematology 2023;31(1):45-49
OBJECTIVE:
To observe the clinical significance of translocator proteins (TSPO) gene in the treatment of FLT3-ITD/DNMT3A R882 double-mutated acute myeloid leukemia (AML).
METHODS:
Seventy-six patients with AML hospitalized in the Department of Hematology of the Affiliated People's Hospital of Ningbo University from June 2018 to June 2020 were selected, including 34 patients with FLT3-ITD mutation, 27 patients with DNMT3A R882 mutation, 15 patients with FLT3-ITD/DNMT3A R882 double mutation, as well as 19 patients with immune thrombocytopenia (ITP) hospitalized during the same period as control group. RNA was routinely extracted from 3 ml bone marrow retained during bone puncture, and TSPO gene expression was detected by transcriptome sequencing (using 2-deltadeltaCt calculation).
RESULTS:
The expression of TSPO gene in FLT3-ITD group and DNMT3A R882 group at first diagnosis was 2.02±1.04 and 1.85±0.76, respectively, which were both higher than 1.00±0.06 in control group, but the differences were not statistically significant (P=0.671, P=0.821). The expression of TSPO gene in the FLT3-ITD/DNMT3A R882 group was 3.98±1.07, wich was significantly higher than that in the FLT3-ITD group and DNMT3A R882 group, the differences were statistically significant (P=0.032, P=0.021). The expression of TSPO gene in patients who achieved complete response after chemotherapy in the FLT3-ITD/DNMT3A R882 group was 1.19±0.87, which was significantly lower than that at first diagnosis, and the difference was statistically significant (P=0.011).
CONCLUSION
TSPO gene may be used as an indicator of efficacy in FLT3-ITD /DNMT3A R882 double-mutated AML.
Humans
;
DNA (Cytosine-5-)-Methyltransferases/genetics*
;
DNA Methyltransferase 3A
;
Mutation
;
Leukemia, Myeloid, Acute/drug therapy*
;
Nucleophosmin
;
Prognosis
;
fms-Like Tyrosine Kinase 3/genetics*
;
Receptors, GABA/therapeutic use*
2.Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor.
Yinghui WEI ; Meiling ZHANG ; Jing HU ; Yingsi ZHOU ; Mingxing XUE ; Jianhang YIN ; Yuanhua LIU ; Hu FENG ; Ling ZHOU ; Zhifang LI ; Dongshuang WANG ; Zhiguo ZHANG ; Yin ZHOU ; Hongbin LIU ; Ning YAO ; Erwei ZUO ; Jiazhi HU ; Yanzhi DU ; Wen LI ; Chunlong XU ; Hui YANG
Protein & Cell 2023;14(6):416-432
Approximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ε4 allele copies were converted to the AD-neutral ε3 allele in human ε4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.
Humans
;
Apolipoprotein E4/genetics*
;
Cytosine
;
Mutation
;
Blastocyst
;
Heterozygote
;
Gene Editing
;
CRISPR-Cas Systems
3.Recent advances and applications of base editing systems.
Chinese Journal of Biotechnology 2021;37(7):2307-2321
The CRISPR system is able to accomplish precise base editing in genomic DNA, but relies on the cellular homology-directed recombination repair pathway and is therefore extremely inefficient. Base editing is a new genome editing technique developed based on the CRISPR/Cas9 system. Two base editors (cytosine base editor and adenine base editor) were developed by fusing catalytically disabled nucleases with different necleobase deaminases. These two base editors are able to perform C>T (G>A) or A>G (T>C) transition without generating DNA double-stranded breaks. The base editing technique has been widely used in gene therapy, animal models construction, precision animal breeding and gene function analysis, providing a powerful tool for basic and applied research. This review summarized the development process, technical advantages, current applications, challenges and perspectives for base editing technique, aiming to help the readers better understand and use the base editing technique.
Adenine
;
Animals
;
CRISPR-Cas Systems/genetics*
;
Cytosine
;
DNA Breaks, Double-Stranded
;
Gene Editing
4.DNMT3A/3B overexpression might be correlated with poor patient survival, hypermethylation and low expression of ESR1/PGR in endometrioid carcinoma: an analysis of The Cancer Genome Atlas.
Dan HE ; Xiao WANG ; Yan ZHANG ; Jian ZHAO ; Rui HAN ; Ying DONG
Chinese Medical Journal 2019;132(2):161-170
BACKGROUND:
DNA methylation is involved in numerous biologic events and associates with transcriptional gene silencing, playing an important role in the pathogenesis of endometrial cancer. ESR1/PGR frequently undergoes de novo methylation and loss expression in a wide variety of tumors, including breast, colon, lung, and brain tumors. However, the mechanisms underlying estrogen and progesterone receptors (ER/PR) loss in endometrial cancer have not been studied extensively. The aims of this study were to determine the expression of DNA (cytosine-5)-methyltransferase 3A/3B (DNMT3A/3B) in endometrial cancer to investigate whether the methylation catalyzed by DNMT3A/3B contributes to low ER/PR expression.
METHODS:
The clinicopathologic information and RNA-Seq expression data of DNMT3A/3B of 544 endometrial cancers were derived from The Cancer Genome Atlas (TCGA) uterine cancer cohort in May 2018. RNA-Seq level of DNMT3A/3B was compared between these clinicopathologic factors with t-test or one-way analysis of variance.
RESULTS:
DNMT3A/3B was overexpressed in endometrioid carcinoma (EEC) and was even higher in non-endometrioid carcinoma (NEEC) (DNMT3A, EEC vs. NEEC: 37.6% vs. 69.9%, t = -7.440, P < 0.001; DNMT3B, EEC vs. NEEC: 42.4% vs. 72.8%, t = -6.897, P < 0.001). In EEC, DNMT3A overexpression was significantly correlated with the hypermethylation and low expression of the ESR1 and PGR (P < 0.05). The same trend was observed in the DNMT3B overexpression subgroup. In the ESR1/PGR low-expression subgroups, as much as 83.1% of ESR1 and 59.5% of PGR were hypermethylated, which was significantly greater than the ESR1/PGR high-expression subgroups (31.3% and 11.9%, respectively). However, the above phenomena were absent in NEEC, while DNMT3A/3B overexpression, ESR1/PGR hypermethylation, and low ER/PR expression occurred much more often. In univariate analysis, DNMT3A/3B overexpressions were significantly correlated with worse prognosis. In multivariate analysis, only DNMT3A was an independent predictor of disease-free survival (P < 0.05).
CONCLUSIONS
DNMT3A/3B expression increases progressively from EEC to NEEC and is correlated with poor survival. The mechanisms underlying low ER/PR expression might be distinct in EEC vs. NEEC. In EEC, methylation related to DNMT3A/3B overexpression might play a major role in ER/PR downregulation.
Adult
;
Aged
;
Aged, 80 and over
;
Carcinoma, Endometrioid
;
genetics
;
metabolism
;
pathology
;
DNA (Cytosine-5-)-Methyltransferases
;
genetics
;
metabolism
;
DNA Methylation
;
genetics
;
Endometrial Neoplasms
;
genetics
;
metabolism
;
pathology
;
Estrogen Receptor alpha
;
genetics
;
metabolism
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Immunohistochemistry
;
Male
;
Middle Aged
;
Prognosis
5.Study on mechanism of Cuscutae Semen flavonoids in improving reproductive damage of Tripterygium Glycosides Tablets in rats based on high-throughput transcriptome sequencing.
Bo ZHANG ; Hang SU ; Xian-Qing REN ; Wei-Xia LI ; Ying DING ; Xia ZHANG ; Wen-Sheng ZHAI ; Chun-Dong SONG
China Journal of Chinese Materia Medica 2019;44(16):3478-3485
Tripterygium Glycosides Tablets has good anti-inflammatory and immunomodulatory activities,but its reproductive damage is significant. Previous studies of the research group have found that Cuscutae Semen flavonoids can improve spermatogenic cell damage caused by Tripterygium Glycosides Tablets by regulating spermatogenic cell cycle,apoptosis and related protein expression,but the mechanism of action at the gene level is still unclear. In this study,Illumina high-throughput sequencing platform was applied in transcriptional sequencing of spermatogenic cells of rats after the intervention of Cuscutae Semen flavonoids and Tripterygium Glycosides Tablets. Differentially expressed genes were screened out and the GO enrichment and KEGG pathway analysis of differentially expressed genes were conducted to explore the mechanism of Cuscutae Semen flavonoids in improving reproductive injury caused by Tripterygium Glycosides Tablets. The results showed that 794 up-regulated genes and 491 down-regulated genes were screened in Tripterygium Glycosides Tablets group compared with the blank group. Compared with Tripterygium Glycosides Tablets,440 up-regulated genes and 784 down-regulated genes were screened in the Cuscutae Semen flavonoids+Tripterygium Glycosides Tablets group. Among them,the gene closely related to reproductive function is DNMT3 L. Analysis of GO function and KEGG signaling pathway enrichment showed that the above differentially expressed genes were mainly enriched in cell,cell process,catalytic activity,binding,ovarian steroid synthesis,thyroid hormone and other functions and pathways. The thyroid hormone signaling pathway was the common enrichment pathway of the two control groups. In a word,Cuscutae Semen flavonoids has a good treatment effect on male reproductive damage caused by Tripterygium Glycosides Tablets. The mechanism may be closely related to up-regulation of DNMT3 L genes and intervention of thyroid hormone signaling pathway. At the same time,the discovery of many different genes provides valuable information for study on the mechanism of Cuscutae Semen flavonoids and Tripterygium Glycosides Tablets compatibility decreasing toxicity and increasing efficiency.
Animals
;
Cuscuta
;
chemistry
;
DNA (Cytosine-5-)-Methyltransferases
;
genetics
;
Female
;
Flavonoids
;
pharmacology
;
Genitalia
;
drug effects
;
pathology
;
Glycosides
;
toxicity
;
High-Throughput Nucleotide Sequencing
;
Male
;
Rats
;
Seeds
;
chemistry
;
Signal Transduction
;
Tablets
;
Thyroid Hormones
;
genetics
;
Transcriptome
;
Tripterygium
;
toxicity
6.A Potential Therapy Using Engineered Stem Cells Prevented Malignant Melanoma in Cellular and Xenograft Mouse Models
Jae Rim HEO ; Kyung A HWANG ; Seung U KIM ; Kyung Chul CHOI
Cancer Research and Treatment 2019;51(2):797-811
PURPOSE: In the present study, human neural stem cells (hNSCs) with tumor-tropic behavior were used as drug delivery vehicle to selectively target melanoma. A hNSC line (HB1.F3) was transduced into two types: one expressed only the cytosine deaminase (CD) gene (HB1.F3. CD) and the other expressed both CD and human interferon-β (IFN-β) genes (HB1.F3.CD. IFN-β). MATERIALS AND METHODS: This study verified the tumor-tropic migratory competence of engineered hNSCs on melanoma (A375SM) using a modified Boyden chamber assay in vitro and CM-DiI staining in vivo. The antitumor effect of HB1.F3.CD and HB1.F3.CD.IFN-β on melanoma was also confirmed using an MTT assay in vitro and xenograft mouse models. RESULTS: A secreted form of IFN-β from the HB1.F3.CD.IFN-β cells modified the epithelial-mesenchymal transition (EMT) process and metastasis of melanoma. 5-Fluorouracil treatment also accelerated the expression of the pro-apoptotic protein BAX and decelerated the expression of the anti-apoptotic protein Bcl-xL on melanoma cell line. CONCLUSION: Our results illustrate that engineered hNSCs prevented malignant melanoma cells from proliferating in the presence of the prodrug, and the form that secreted IFN-β intervened in the EMT process and melanoma metastasis. Hence, neural stem cell-directed enzyme/prodrug therapy is a plausible treatment for malignant melanoma.
Animals
;
Cell Line
;
Cytosine Deaminase
;
Epithelial-Mesenchymal Transition
;
Flucytosine
;
Fluorouracil
;
Heterografts
;
Humans
;
In Vitro Techniques
;
Melanoma
;
Mental Competency
;
Mice
;
Neoplasm Metastasis
;
Neural Stem Cells
;
Stem Cells
7.Clinical Characteristics of Peripheral Hemogram and DNMT3A Gene Mutation in Patients with Primary AML Treated by FLT3-ITD-mt and FLT3-ITD-wt.
Jing-Dong LI ; Xiao-Lin HAN ; Cui YANG ; Ang LI
Journal of Experimental Hematology 2019;27(6):1820-1824
OBJECTIVE:
To explore the efficacy and safety of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of relapsed or refractory peripheral T-cell lymphoma(PTCL).
METHODS:
The clinical data of 6 patients with relapsed or refractory PTCL undergoing allo-HSCT from Sep. 2014 to Sep. 2018 in the department of hematology, aerospace center hospital were retrospectively analyzed. Complications and disease-free survival after HSCT were observed.
RESULTS:
All the patients could well tolerate the conditioning regimen and acquired hematopoietic recon-struction. Following up till December 2018, with a median time of 11.5 months (1-51); acute GVHD developed in 2 cases and chronic GVHD developed in 5 cases, Among 6 cases one case died of viral pheumonia and the other 5 patients remained disease-free survival. The longest disease-free survival time has reached 51 months.
CONCLUSION
allo-HSCT is a safe and effective method for relapsed or refractory peripheral T-cell lymphoma, which can be chosen as salvage treatment method for patients with primary resistance. Optimization of the conditioning regimen may result in better efficacy of allo-HSCT.
DNA (Cytosine-5-)-Methyltransferases
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Leukemia, Myeloid, Acute
;
Mutation
;
Retrospective Studies
;
Transplantation Conditioning
;
fms-Like Tyrosine Kinase 3
8.Lack of Association Between DNMT3B Polymorphisms and Sporadic Parkinson's Disease in a Han Chinese Population.
Hong PAN ; Jun-Yi SHEN ; Juan-Juan DU ; Shi-Shuang CUI ; Jin LIU ; Yi-Qi LIN ; Yi-Xi HE ; Yang FU ; Chao GAO ; Gen LI ; Sheng-Di CHEN ; Jian-Fang MA
Neuroscience Bulletin 2018;34(5):867-869
9.Inhibitory effect of polyphyllin Ⅰ on the proliferation of prostate cancer PC3 cells via ERK1/2/P65/DNMT1 and its molecular mechanism.
Pei-Liang ZOU ; Qiu-Hong ZHANG ; Jian-Fu ZHOU ; Rong-Wu LIN ; Zhi-Qiang CHEN ; Song-Tao XIANG
National Journal of Andrology 2018;24(3):199-205
ObjectiveTo explore the inhibitory effect of polyphyllin Ⅰ (PPⅠ) on the proliferation of castration-resistant prostate cancer PC3 cells and its molecular mechanism.
METHODSWe cultured human prostate cancer PC3 cells in vitro and treated them with PPⅠ at the concentrations of 0 (blank group), 0.4, 0.8, 1.2, 1.6, 2.0, and 2.4 μmol/L for 24, 48, and 72 hours, respectively. Then we detected the proliferation of the cells by MTT assay, measured their apoptosis by flow cytometry, and determined the expressions of p-ERK1/2, ERK1/2, NF-κB/p65 and DNMT1 proteins as well as the level of NF-κB/p65 in the cells additionally treated with the ERK1/2 inhibitor SP600125 by Western blot.
RESULTSCompared with the blank control group, the PPⅠ-treated PC3 cells showed a concentration- and time-dependent reduction of the survival rate (1.00 ± 0.00 vs 0.85 ± 0.05, P < 0.01) at 0.4 μmol/L after 48 hours of intervention, concentration-dependent early apoptosis at 0.8 μmol/L (4.83 ± 0.95 vs 13.83 ± 2.97, P < 0.01), time-dependent increase of the expressions of p-ERK1/2 (1.00 ± 0.00 vs 1.73 ± 0.17, P < 0.01) and ERK1/2 (1.00 ± 0.00 vs 1.36 ± 0.12, P < 0.01) at 2 hours, and concentration-dependent decrease of the expressions of NF-κB/p65 and DNMT1 at 1.2 μmol/L (1.00 ± 0.00 vs 0.78 ± 0.10 and 0.63 ± 0.06, P < 0.01) and 1.6 μmol/L (1.00 ± 0.00 vs 0.67 ± 0.11 and 0.52 ± 0.09, P<0.01). Inhibition of ERK1/2 phosphorylation with PD98059 markedly reversed PPⅠ-induced decrease of the NF-κB/p65 expression as compared with that in the PPⅠ group (0.86 ± 0.18 vs 0.43 ± 0.09, P < 0.05).
CONCLUSIONSPPⅠ induces the early apoptosis and suppresses the proliferation of PC3 cells, probably by activating the ERK1/2 pathway and inhibiting the expressions of the NF-κB/p65 and DNMT1 proteins.
Apoptosis ; Cell Proliferation ; drug effects ; DNA (Cytosine-5-)-Methyltransferase 1 ; metabolism ; Diosgenin ; analogs & derivatives ; pharmacology ; Flavonoids ; metabolism ; Humans ; MAP Kinase Signaling System ; Male ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; NF-kappa B ; metabolism ; PC-3 Cells ; Phosphorylation ; Prostatic Neoplasms, Castration-Resistant ; drug therapy ; metabolism ; pathology ; Signal Transduction ; Transcription Factor RelA ; metabolism
10.Relationship between DNMT1 and Methylation of SHP-1 Promoter 2 in K562 Cells.
Xue-Dong LIU ; Xiao LIU ; Xiu-Fen GUO ; Jian-Min LUO ; Ying-Hua LI
Journal of Experimental Hematology 2018;26(2):401-406
OBJECTIVETo investigate the relationship of DNA methyltransferase 1 ( DNMT1 ) with hematopoietic cell phosphatase (SHP-1) gene expression and promoter 2 methylation status in cell line K562.
METHODSThe promoter sequence of SHP-1 gene promoter 2 in NCBI database was analyzed, the K562 cells were transfected with the lentiviral plasmids-the specified retroviral vector psiHIV-mU6-shDNMT1 and psiHIV-mU6-mcherryFP-control. The methylation status of SHP-1 gene promoter 2 in K562 cells was detected by methylation-specific polymerase chain reaction (MSP) and bisulfite-modified sequencing (BSP). Western blot was used to detect the protein expression level of SHP-1 and DNMT1, the SYBR Green fluorescence quantitative PCR was used to detect the expression of SHP-1 mRNA.
RESULTSIt was found that the promoter 2 of SHP-1 gene located between -577 bp to +300 bp, and 22 CpG sites contained between -353 bp-+182 bp were aberrantly hypermethylated and the SHP-1 could not be detected in K562 cells. In vitro, the detection demonstrated that the expression level of DNMT1 in K562 cells transfected with psiHIV-mU6-shDNMT1 was 0.48±0.06 significantly lower than that of psiHIV-mU6-control group (1.33±0.19)(t= 4.18, P<0.05). The expression of SHP-1 mRNA in K562 cells transfected with psiHIV-mU6-shDNMT1 was significantly higher than that in K562 cells transfected with psiHIV-mU6-shDNMT1 (14.23±3.83 vs 1.031±0.156)(P<0.01). DNMT1 silencing induced demethylation of the 22 CpG sites located in the SHP-1 promoter 2, and SHP-1 gene was re-expression in K562 cells.
CONCLUSIONThe DNMT1 in K562 cells relates with the hypermethylation and silencing of SHP-1 promoter in K562 cells.
CpG Islands ; DNA (Cytosine-5-)-Methyltransferases ; DNA Methylation ; Humans ; K562 Cells ; Promoter Regions, Genetic ; RNA, Messenger ; Real-Time Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail