1.Vagus nerve modulates acute-on-chronic liver failure progression via CXCL9.
Li WU ; Jie LI ; Ju ZOU ; Daolin TANG ; Ruochan CHEN
Chinese Medical Journal 2025;138(9):1103-1115
BACKGROUND:
Hepatic inflammatory cell accumulation and the subsequent systematic inflammation drive acute-on-chronic liver failure (ACLF) development. Previous studies showed that the vagus nerve exerts anti-inflammatory activity in many inflammatory diseases. Here, we aimed to identify the key molecule mediating the inflammatory process in ACLF and reveal the neuroimmune communication arising from the vagus nerve and immunological disorders of ACLF.
METHODS:
Proteomic analysis was performed and validated in ACLF model mice or patients, and intervention animal experiments were conducted using neutralizing antibodies. PNU-282987 (acetylcholine receptor agonist) and vagotomy were applied for perturbing vagus nerve activity. Single-cell RNA sequencing (scRNA-seq), flow cytometry, immunohistochemical and immunofluorescence staining, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology were used for in vivo or in vitro mechanistic studies.
RESULTS:
The unbiased proteomics identified C-X-C motif chemokine ligand 9 (CXCL9) as the greatest differential protein in the livers of mice with ACLF and its relation to the systematic inflammation and mortality were confirmed in patients with ACLF. Interventions on CXCL9 and its receptor C-X-C chemokine receptor 3 (CXCR3) improved liver injury and decreased mortality of ACLF mice, which were related to the suppressing of hepatic immune cells' accumulation and activation. Vagus nerve stimulation attenuated while vagotomy aggravated the expression of CXCL9 and the severity of ACLF. Blocking CXCL9 and CXCR3 ameliorated liver inflammation and increased ACLF-associated mortality in ACLF mice with vagotomy. scRNA-seq revealed that hepatic macrophages served as the major source of CXCL9 in ACLF and were validated by immunofluorescence staining and flow cytometry analysis. Notably, the expression of CXCL9 in macrophages was modulated by vagus nerve-mediated cholinergic signaling.
CONCLUSIONS
Our novel findings highlighted that the neuroimmune communication of the vagus nerve-macrophage-CXCL9 axis contributed to ACLF development. These results provided evidence for neuromodulation as a promising approach for preventing and treating ACLF.
Animals
;
Mice
;
Chemokine CXCL9/metabolism*
;
Vagus Nerve/physiology*
;
Acute-On-Chronic Liver Failure/metabolism*
;
Humans
;
Male
;
Mice, Inbred C57BL
;
Proteomics
;
Flow Cytometry
;
Receptors, CXCR3/metabolism*
2.Tissue-resident peripheral helper T cells foster hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion.
Haoyuan YU ; Mengchen SHI ; Xuejiao LI ; Zhixing LIANG ; Kun LI ; Yongwei HU ; Siqi LI ; Mingshen ZHANG ; Yang YANG ; Yang LI ; Linsen YE
Chinese Medical Journal 2025;138(17):2148-2158
BACKGROUND:
Peripheral helper T (T PH ) cells are uniquely positioned within pathologically inflamed non-lymphoid tissues to stimulate B-cell responses and antibody production. However, the phenotype, function, and clinical relevance of T PH cells in hepatocellular carcinoma (HCC) are currently unknown.
METHODS:
Blood, tumor, and peritumoral liver tissue samples from 39 HCC patients (Sep 2016-Aug 2017) and 101 HCC patients (Sep 2011-Dec 2012) at the Third Affiliated Hospital of Sun Yat-sen University were used. Flow cytometry was used to quantify the expression, phenotype, and function of T PH cells. Log-rank tests were performed to evaluate disease-free survival and overall survival in samples from 39 patients and 101 patients with HCC. T PH cells, CD19 + B cells, and T follicular helper (T FH ) cells were cultured separately in vitro or isolated from C57/B6L mice in vivo for functional assays.
RESULTS:
T PH cells highly infiltrated tumor tissues, which was correlated with tumor size, early recurrence, and shorter survival time. The tumor-infiltrated T PH cells showed a unique ICOS hi CXCL13 + IL-21 - MAF + BCL-6 - phenotype and triggered naïve B-cell differentiation into regulatory B cells. Triggering programmed cell death protein 1 (PD-1) induced the production of C-X-C motif chemokine ligand 13 (CXCL13) by T PH cells, which then suppressed tumor-specific immunity and promoted disease progression.
CONCLUSION
Our study reveals a novel regulatory mechanism of T PH cell-regulatory B-cell-mediated immunosuppression and provides an important perspective for determining the balance between the differentiation of protumorigenic T PH cells and that of antitumorigenic T FH cells in the HCC microenvironment.
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Humans
;
T-Lymphocytes, Helper-Inducer/metabolism*
;
Animals
;
Mice
;
Male
;
Female
;
Mice, Inbred C57BL
;
Middle Aged
;
B-Lymphocytes, Regulatory/metabolism*
;
Flow Cytometry
;
Interleukin-21
;
Aged
;
Chemokine CXCL13/metabolism*
3.FLT3 ligand regulates expansion of regulatory T-cells induced by regulatory dendritic cells isolated from gut-associated lymphoid tissues through the Notch pathway.
Na LI ; Jingwei MAO ; Haiying TANG ; Xiaoyan TAN ; Jian BI ; Hao WU ; Xiuli CHEN ; Yingde WANG
Chinese Medical Journal 2025;138(13):1595-1606
BACKGROUND:
Regulatory dendritic cell (DCreg) subset exhibits a unique capacity for inducing immune tolerance among the variety subsets of dendritic cells (DCs) within gut-associated lymphoid tissues (GALTs). Fms-like tyrosine kinase 3 ligand (FLT3L) is involved in the differentiation of DCregs and the subsequent expansion of regulatory T-cells (Tregs) mediated by DCregs, though the precise mechanism remains poorly understood. This study aimed to explore the expansion mechanism of Treg induced by DCreg and the role of FLT3L in this process.
METHODS:
DCregs were distinguished from other DC subsets isolated from GALTs of BALB/c mice through a mixed lymphocyte reaction assay. The functions and mechanisms by which FLT3L promoted Treg expansion via DCregs were investigated in vitro through co-culture experiments involving DCregs and either CD4 + CD25 - T-cells or CD4 + CD25 + T-cells. Additionally, an in vivo experiment was conducted using a dextran sulfate sodium (DSS)-induced colitis model in mice.
RESULTS:
CD103 + CD11b + DC exhibited DCreg-like functionality and was identified as DCreg for subsequent investigation. Analysis of Foxp3 + Treg percentages within a co-culture system of CD4 + CD25 - T-cells and DCregs, with or without FLT3L, demonstrated the involvement of the FLT3/FLT3L axis in driving the differentiation of precursor T-cells into Foxp3 + Tregs induced by DCregs. Cell migration and co-culture assays revealed that the FLT3/FLT3L axis enhanced DCreg migration toward Tregs via the Rho pathway. Additionally, it was observed that DCregs could promote Treg proliferation through the Notch pathway, as inhibition of Notch signaling by DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) suppressed Treg expansion within the co-culture system of DCregs and CD4 + T-cells or CD4 + CD25 + T-cells. Furthermore, the FLT3/FLT3L axis influenced JAG1 expression in DCregs, indirectly modulating Treg expansion. In vivo experiments further established that FLT3L promoted DCreg expansion and restored Treg balance in DSS-induced colitis models, thereby ameliorating colitis symptoms in mice.
CONCLUSION
The FLT3/FLT3L axis is integral to the maintenance of DCreg function in Treg expansion.
Animals
;
T-Lymphocytes, Regulatory/immunology*
;
Dendritic Cells/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Membrane Proteins/metabolism*
;
Receptors, Notch/metabolism*
;
Lymphoid Tissue/metabolism*
;
Signal Transduction/physiology*
;
Coculture Techniques
;
Flow Cytometry
4.SAMSN1 causes sepsis immunosuppression by inducing macrophages to express coinhibitory molecules that cause T-cell exhaustion via KEAP1-NRF2 signaling.
Yao LI ; Tingting LI ; Fei XIAO ; Lijun WANG ; Xuelian LIAO ; Wei ZHANG ; Yan KANG
Chinese Medical Journal 2025;138(13):1607-1620
BACKGROUND:
Immunosuppression is closely related to the pathogenesis of sepsis, but the underlying mechanisms have not yet been fully elucidated. In this study, we aimed to examine the role of the Sterile Alpha Motif, Src Homology 3 domain and nuclear localization signal 1 (SAMSN1) in sepsis and elucidate its potential molecular mechanism in sepsis induced immunosuppression.
METHODS:
RNA sequencing databases were used to validate SAMSN1 expression in sepsis. The impact of SAMSN1 on sepsis was verified using gene knockout mice. Flow cytometry was employed to delineate how SAMSN1 affects immunity in sepsis, focusing on immune cell types and T cell functions. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing in RAW264.7 macrophages enabled interrogation of SAMSN1 's regulatory effects on essential macrophage functions, including cell proliferation and phagocytic capacity. The mechanism of SAMSN1 in the interaction between macrophages and T cells was investigated using the RAW264.7 cell line and primary cell lines.
RESULTS:
SAMSN1 expression was significantly increased in patients with sepsis and was positively correlated with sepsis mortality. Genetic deletion of Samsn1 in murine sepsis model improved T cell survival, elevated T cell cytolytic activity, and activated T cell signaling transduction. Concurrently, Samsn1 knockout augmented macrophage proliferation capacity and phagocytic efficiency. In macrophage, SAMSN1 binds to Kelch-like epichlorohydrin-associated protein 1 (KEAP1), causing nuclear factor erythroid 2-related factor 2 (NRF2) to dissociate from the KEAP1-NRF2 complex and translocate into the nucleus. This promotes the transcription of the coinhibitory molecules CD48/CD86/carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1), which bind to their corresponding receptors natural killer cell receptor 2B4/CD152/T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) on the surface of T cells, inducing T-cell exhaustion.
CONCLUSIONS
SAMSN1 deletion augmented adaptive T cell immunity and macrophage phagocytic-proliferative dual function. Furthermore, it mediates the KEAP1-NRF2 axis, which affects the expression of coinhibitory molecules on macrophages, leading to T-cell exhaustion. This novel immunosuppression mechanism potentially provides a candidate molecular target for sepsis immunotherapy.
Animals
;
NF-E2-Related Factor 2/metabolism*
;
Mice
;
Macrophages/immunology*
;
Sepsis/metabolism*
;
Kelch-Like ECH-Associated Protein 1/genetics*
;
T-Lymphocytes/immunology*
;
Humans
;
Signal Transduction/physiology*
;
RAW 264.7 Cells
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Flow Cytometry
;
T-Cell Exhaustion
5.Itaconate derivative 4-OI inhibits M1 macrophage polarization and restores its impaired function in immune thrombocytopenia through metabolic reprogramming.
Qiang LIU ; Anli LIU ; Shaoqiu LENG ; Xiaoyu ZHANG ; Xiaolin WANG ; Zhang CHENG ; Shuwen WANG ; Jun PENG ; Qi FENG
Chinese Medical Journal 2025;138(16):2006-2015
BACKGROUND:
Macrophage polarization anomalies and dysfunction play a crucial role in the pathogenesis of immune thrombocytopenia (ITP). Itaconate is a Krebs cycle-derived immunometabolite synthesized by myeloid cells to modulate cellular metabolism and inflammatory responses. This study aimed to evaluate the immunoregulatory effects of an itaconate derivative on macrophages in patients with ITP.
METHODS:
Peripheral blood-derived macrophages from patients with ITP and healthy controls were treated with 4-octyl itaconate (4-OI), a derivative of itaconate that can penetrate the cell membrane. Macrophage polarization, antigen-presenting functions, and phagocytic capability were measured via flow cytometry and enzyme-linked immunosorbent assay (ELISA). Macrophage glycolysis in patients with ITP and the metabolic regulatory effect of 4-OI were detected using a Seahorse XFe96 Analyzer. An active murine model of ITP was used to evaluate the therapeutic effects of 4-OI in vivo .
RESULTS:
4-OI reduced the levels of CD80 and CD86 in M1 macrophages and suppressed the release of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 pro-inflammatory cytokines, suggesting that 4-OI could hinder the polarization of macrophages toward an M1 phenotype. We found that 4-OI pretreated M1 macrophages reduced the proliferation of CD4 + T cells and promoted the differentiation of regulatory T cells. In addition, after 4-OI treatment, the phagocytic capacity of M1 macrophages toward antibody-coated platelets decreased significantly in patients with ITP. In addition, the glycolytic function of M1 macrophages was elevated in individuals with ITP compared to those in healthy controls. 4-OI treatment downregulated glycolysis in M1 macrophages. The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) also inhibited the polarization of M1 macrophages and restored their functions. In vivo , 4-OI treatment significantly increased platelet counts in the active ITP murine model.
CONCLUSIONS
Itaconate derivative 4-OI inhibited M1 macrophage polarization and restored impaired functions through metabolic reprogramming. This study provides a novel therapeutic option for ITP.
Macrophages/metabolism*
;
Humans
;
Animals
;
Succinates/pharmacology*
;
Mice
;
Male
;
Female
;
Adult
;
Middle Aged
;
Flow Cytometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Enzyme-Linked Immunosorbent Assay
;
Purpura, Thrombocytopenic, Idiopathic/metabolism*
;
Glycolysis/drug effects*
;
Metabolic Reprogramming
6.Expression and Clinical Significance of Co-inhibitory Molecules TIGIT/CD155 and PD-1 in Chronic Lymphocytic Leukemia.
Rui ZHANG ; Shuang CHEN ; Ting-Ting LUO ; Jian-Hua QU
Journal of Experimental Hematology 2025;33(1):54-61
OBJECTIVE:
To investigate the expression of co-inhibitory molecules TIGIT/CD155 and PD-1 on CD4+T cells and Treg cells in peripheral blood of patients with chronic lymphocytic leukemia (CLL) and analyze their clinical significance.
METHODS:
The expression of PD-1 and TIGIT on CD4+T cells and Treg cells was detected by flow cytometry in 40 CLL patients and 20 healthy controls. Additionally, the expression of CD155 on peripheral blood B cells and DC cells of the enrolled subjects was detected.
RESULTS:
The proportions of PD-1+TIGIT+CD4+T cells, PD-1+TIGIT+Treg cells and CD155+DC cells in peripheral blood of CLL patients were significantly higher than those of healthy controls ( P < 0.05). The proportions of PD-1+TIGIT+CD4+T cells and PD-1+TIGIT+Treg cells in CLL patients were significantly higher than those of PD-1+TIGIT-CD4+T cells and PD-1+TIGIT-Treg cells, respectively ( P < 0.05). Both PD-1+TIGIT+CD4+T cells and PD-1+TIGIT+Treg cells were positively correlated with the level of CD155+DC cells (r =0.742, r =0.766). With the progression of Binet stage, the proportions of PD-1+TIGIT+CD4+T cells, PD-1+TIGIT+Treg cells, and CD155+DC cells gradually increased ( P < 0.05), and the aforementioned three types cells were all increased in patients with CD38≥30%, IGVH unmutated, or poor prognosis due to chromosomal abnormalities ( P < 0.05).
CONCLUSION
Co-inhibitory molecules PD-1 and TIGIT may be involved in immunodepletion in patients with advanced CLL, which has clinical prognostic value. Dual inhibitor molecular targeted therapy provides a new direction for the individualized treatment of CLL.
Humans
;
Leukemia, Lymphocytic, Chronic, B-Cell/immunology*
;
Receptors, Immunologic/metabolism*
;
Programmed Cell Death 1 Receptor/metabolism*
;
T-Lymphocytes, Regulatory/metabolism*
;
Receptors, Virus/metabolism*
;
CD4-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Middle Aged
;
Flow Cytometry
;
Clinical Relevance
7.Effect of Iron Overload on Expression of PD-1 on Surface of T Lymphocyte in Mice.
Yu-Mei LIU ; Hua-Quan WANG ; Zong-Hong SHAO
Journal of Experimental Hematology 2025;33(1):262-268
OBJECTIVE:
To investigate the effect of iron overload on the expression of programmed death-1 (PD-1) on the surface of T lymphocyte in mice, in order to analyze the mechanism of iron overload inhibiting T cell function.
METHODS:
Flow cytometry was used to detect the labile iron pool (LIP), reactive oxygen species (ROS), and the expression of PD-1 in peripheral blood T cells in mice with iron overload.
RESULTS:
The mean fluorescence intensity of calcein in T cells of mice in iron overload group was 2 492±311.1, which was significantly lower than 3 136±537.3 in the control group ( P <0.01), suggesting that increased LIP in iron overload group. Compared with the control group, the ratio of CD4/CD8 of peripheral blood T cells was normal or increased in iron overload group. The level of ROS in T cells was 2 452±393.3 in iron overload group, which was significantly increased compared to 1 874±121.8 in the control group ( P <0.001). The expression of PD-1 on the surface of T cells was significantly increased. The percentage of PD-1+ cells in CD8+T cells was (12.97±6.92)% and (6.18±2.95)% in iron overload group and control group, respectively ( P <0.05), and that in CD8-T cells was (33.55±15.69)% and (12.51±4.11)% ( P <0.001).
CONCLUSION
The expression of PD-1 on peripheral blood T cells in mice with iron overload is significantly increased, which may be involved in inhibiting T cell effector function.
Animals
;
Mice
;
Programmed Cell Death 1 Receptor/metabolism*
;
Iron Overload/metabolism*
;
Reactive Oxygen Species/metabolism*
;
T-Lymphocytes/metabolism*
;
Flow Cytometry
;
Iron
;
CD8-Positive T-Lymphocytes/metabolism*
8.Immunophenotypic Characteristics of Bone Marrow Granulocytes and Their Clinical Significance in Patients with Multiple Myeloma.
Ning-Fang WANG ; Chong-Shan ZHAO ; Dong-Dong ZHANG ; Zhuo-Wen CAI ; Fang-Fang CAI ; Fang LIU ; Peng-Hao ZHAO
Journal of Experimental Hematology 2025;33(2):447-454
OBJECTIVE:
To explore the immunophenotypic characteristics of bone marrow granulocytes (G) and their clinical significance in patients with multiple myeloma (MM).
METHODS:
The granulocyte immunophenotypes of bone marrow in 70 MM patients (MM group) and 40 anemia patients (control group) were detected by flow cytometry, and its correlation with clinical characteristics was further analyzed. Univariate and multivariate regression analysis were used to screen factors that affected prognosis.
RESULTS:
The CD56+G%, CD13+G%, CD22+G% and CD117+G% in MM group were higher than those in the control group (all P <0.05). CD56+G% and CD117+G% in CR+VGPR group were significantly lower than those in PR+MR+PD group (both P <0.05). The CD10+G% in RISS Ⅲ stage and Ca2+ ≥2.65 mmol/L groups were increased (both P <0.05). The CD56+G% in elevated lactate dehydrogenase, β2-microglobulin≥5.5 mg/L and hemoglobin <85 g/L groups were increased (all P <0.05), while the CD117+G% in high-risk cytogenetic positive group was decreased (P <0.05). The expression rate of CD molecules on granulocytes was divided into low (L) and high (H) groups according to the median value. The overall survival (OS) of the LCD56+G%, LCD13+G% and LCD22+G% groups was significantly prolonged (all P <0.05). CD13+G% and CD22+G% were independent risk factors for OS in MM patients (HR=0.443, 0.410, both P <0.05).
CONCLUSION
The CD56+G%, CD10+G% and CD117+G% are closely correlated with clinical features in MM patients, while CD13+G% and CD22+G% are closely correlated with prognosis. Detection of CD molecules expression on granulocytes may be used to evaluate prognosis and guide treatment.
Humans
;
Multiple Myeloma/immunology*
;
Granulocytes/immunology*
;
Prognosis
;
Immunophenotyping
;
Male
;
Bone Marrow
;
Female
;
Flow Cytometry
;
Middle Aged
;
Aged
;
Clinical Relevance
9.Clinical and Laboratory Characteristics of Acute Myeloid Leukemia, Myelodysplasia-Related.
Wei-Bin LI ; Lan YANG ; Shao-Jie CHENG ; Ya CHEN ; Yan JIANG
Journal of Experimental Hematology 2025;33(3):666-671
OBJECTIVE:
To understand clinical and laboratory characteristics of acute myeloid leukemia, myelodysplasia-related (AML-MR).
METHODS:
Blood sample of one patient with AML-MR admitted to our hospital in September 2021 was collected and synthetically analyzed by using techniques including complete blood cell count, peripheral blood and bone marrow cell morphology, bone marrow pathology and immunohistochemistry, hematology examination, flow cytometry (FCM), chromosome karyotype analysis and molecular pathology. The clinical and laboratory characteristics of AML-MR were analyzed and summarized according to the World Health Organization (WHO) standards.
RESULTS:
The patient showed pancytopenia and increased proportion of blasts in smear of peripheral blood cells. Bone marrow cytology and pathological examination showed significant proliferation of hematopoietic cells. Pathological immunohistochemistry showed increased expression of CD61, CD34, and CD117, while MPO, CD13, and CD33 were positive. FCM showed that abnormal myeloid progenitor cells accounted for approximately 18.61% of the total number of nuclear cells, with expression of CD34, CD13, CD117, HLA-DR, and CD33 (small amount). Additionally, 36.34% of the cells were primitive/immature red blood cells which expressed CD36, CD71, and CD117 (small amount). Chromosome karyotype analysis and molecular pathology detected three kinds of abnormalities including -5 and two kinds of TP53 related gene mutation, respectively.
CONCLUSION
AML-MR patient shows pancytopenia and increased proportion of blasts in smear of peripheral blood cells. Bone marrow cytology and pathological examination show significant proliferation of hematopoietic cells. FCM can detect myeloid progenitor cells and primitive/immature red blood cells, while chromosome karyotype analysis can detect three abnormal karyotypes.
Humans
;
Leukemia, Myeloid, Acute/diagnosis*
;
Myelodysplastic Syndromes
;
Flow Cytometry
;
Karyotyping
;
Male
;
Middle Aged
;
Mutation
10.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy

Result Analysis
Print
Save
E-mail