1.A human circulating immune cell landscape in aging and COVID-19.
Yingfeng ZHENG ; Xiuxing LIU ; Wenqing LE ; Lihui XIE ; He LI ; Wen WEN ; Si WANG ; Shuai MA ; Zhaohao HUANG ; Jinguo YE ; Wen SHI ; Yanxia YE ; Zunpeng LIU ; Moshi SONG ; Weiqi ZHANG ; Jing-Dong J HAN ; Juan Carlos Izpisua BELMONTE ; Chuanle XIAO ; Jing QU ; Hongyang WANG ; Guang-Hui LIU ; Wenru SU
Protein & Cell 2020;11(10):740-770
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Adult
;
Aged
;
Aged, 80 and over
;
Aging
;
genetics
;
immunology
;
Betacoronavirus
;
CD4-Positive T-Lymphocytes
;
metabolism
;
Cell Lineage
;
Chromatin Assembly and Disassembly
;
Coronavirus Infections
;
immunology
;
Cytokine Release Syndrome
;
etiology
;
immunology
;
Cytokines
;
biosynthesis
;
genetics
;
Disease Susceptibility
;
Flow Cytometry
;
methods
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Gene Rearrangement
;
Humans
;
Immune System
;
cytology
;
growth & development
;
immunology
;
Immunocompetence
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Mass Spectrometry
;
methods
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Transcriptome
;
Young Adult
2.Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation.
Shu CHEN ; Qian WANG ; Bing HAN ; Jia WU ; Ding-Kun LIU ; Jun-Dong ZOU ; Mi WANG ; Zhi-Hui LIU
Journal of Zhejiang University. Science. B 2020;21(4):327-340
Combined radiation-wound injury (CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells (HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells (HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. The secretion of pro-inflammatory cytokines (human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay (ELISA). The expression of pro-angiogenic factors (vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Relevant molecules of the nuclear factor-κB (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs (HPMSCs/ leptin) exhibited better cell proliferation, migration, and angiogenic potential (expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines (human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
Cell Proliferation
;
Cells, Cultured
;
Cytokines/biosynthesis*
;
Female
;
Human Umbilical Vein Endothelial Cells/radiation effects*
;
Humans
;
Inflammation/etiology*
;
Leptin/pharmacology*
;
Mesenchymal Stem Cells/physiology*
;
Neovascularization, Physiologic/physiology*
;
Placenta/cytology*
;
Pregnancy
;
STAT3 Transcription Factor/genetics*
;
Transcription Factor RelA/genetics*
;
X-Rays
3.Aldosterone induces inflammatory cytokines in penile corpus cavernosum by activating the NF-κB pathway.
Fei WU ; Zu-Quan XIONG ; Shan-Hua MAO ; Ji-Meng HU ; Jian-Qing WANG ; Hao-Wen JIANG ; Qiang DING
Asian Journal of Andrology 2018;20(1):24-29
Emerging evidence indicates that aldosterone and mineralocorticoid receptors (MRs) are associated with the pathogenesis of erectile dysfunction. However, the molecular mechanisms remain largely unknown. In this study, freshly isolated penile corpus cavernosum tissue from rats was treated with aldosterone, with or without MRs inhibitors. Nuclear factor (NF)-kappa B (NF-κB) activity was evaluated by real-time quantitative PCR, luciferase assay, and immunoblot. The results demonstrated that mRNA levels of the NF-κB target genes, including inhibitor of NF-κB alpha (IκB-α), NF-κB1, tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were higher after aldosterone treatment. Accordingly, phosphorylation of p65/RelA, IκB-α, and inhibitor of NF-κB kinase-β was markedly increased by aldosterone. Furthermore, knockdown of MRs prevented activation of the NF-κB canonical pathway by aldosterone. Consistent with this finding, ectopic overexpression of MRs enhanced the transcriptional activation of NF-κB by aldosterone. More importantly, the MRs antagonist, spironolactone blocked aldosterone-mediated activation of the canonical NF-κB pathway. In conclusion, aldosterone has an inflammatory effect in the corpus cavernosum penis, inducing NF-κB activation via an MRs-dependent pathway, which may be prevented by selective MRs antagonists. These data reveal the possible role of aldosterone in erectile dysfunction as well as its potential as a novel pharmacologic target for treatment.
Aldosterone/pharmacology*
;
Animals
;
Cytokines/biosynthesis*
;
Gene Knockdown Techniques
;
I-kappa B Kinase/antagonists & inhibitors*
;
Interleukin-6/genetics*
;
Male
;
Mineralocorticoid Receptor Antagonists/pharmacology*
;
NF-kappa B/genetics*
;
Penis/metabolism*
;
Protein Serine-Threonine Kinases/antagonists & inhibitors*
;
RNA, Messenger/biosynthesis*
;
Rats
;
Rats, Inbred WKY
;
Receptors, Mineralocorticoid/genetics*
;
Signal Transduction/drug effects*
;
Spironolactone/pharmacology*
;
Transcriptional Activation
;
Tumor Necrosis Factor-alpha/biosynthesis*
;
NF-kappaB-Inducing Kinase
4.Effect of heat shock factor 1 on airway hyperresponsiveness and airway inflammation in mice with allergic asthma.
Jing WANG ; Li-Hong XIN ; Wei CHENG ; Zhen WANG ; Wen ZHANG
Chinese Journal of Contemporary Pediatrics 2017;19(2):222-228
OBJECTIVETo investigate the effect of heat shock factor 1 (HSF1) on airway hyperresponsiveness and airway inflammation in mice with asthma and possible mechanisms.
METHODSA total of 36 mice were randomly divided into four groups: control, asthma, HSF1 small interfering RNA negative control (siHSF1-NC), and siHSF1 intervention (n=9 each). Ovalbumin (OVA) sensitization and challenge were performed to induce asthma in the latter three groups. The mice in the siHSF1-NC and siHSF1 groups were treated with siHSF1-NC and siHSF1, respectively. A spirometer was used to measure airway responsiveness at 24 hours after the last challenge. The direct count method was used to calculate the number of eosinophils. ELISA was used to measure the serum level of OVA-specific IgE and levels of interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), and interferon-γ (IFN-γ) in lung tissues and bronchoalveolar lavage fluid (BALF). Quantitative real-time PCR was used to measure the mRNA expression of HSF1 in asthmatic mice. Western blot was used to measure the protein expression of HSF1, high-mobility group box 1 (HMGB1), and phosphorylated c-Jun N-terminal kinase (p-JNK).
RESULTSThe asthma group had significant increases in the mRNA and protein expression of HSF1 compared with the control group (P<0.05). The siHSF1 group had significantly reduced mRNA and protein expression of HSF1 compared with the siHSF1-NC group (P<0.05). The knockdown of HSF1 increased airway wall thickness, airway hyperresponsiveness, OVA-specific IgE content, and the number of eosinophils (P<0.05). Compared with the siHSF1-NC group, the siHSF1 group had significantly increased levels of IL-4, IL-5, and IL-13 and significantly reduced expression of IFN-γ in lung tissues and BALF (P<0.05), as well as significantly increased expression of HMGB1 and p-JNK (P<0.05).
CONCLUSIONSKnockdown of HSF1 aggravates airway hyperresponsiveness and airway inflammation in asthmatic mice, and its possible mechanism may involve the negative regulation of HMGB1 and JNK.
Animals ; Asthma ; etiology ; Bronchial Hyperreactivity ; etiology ; immunology ; Cytokines ; biosynthesis ; DNA-Binding Proteins ; analysis ; physiology ; Eosinophils ; physiology ; Female ; HMGB1 Protein ; analysis ; Heat Shock Transcription Factors ; Immunoglobulin E ; blood ; Mice ; Mice, Inbred BALB C ; Transcription Factors ; analysis ; physiology
5.Platelets and erectile dysfunction.
National Journal of Andrology 2015;21(9):771-774
Platelets, small pieces of cytoplasm with biological activity, split and fall off the megakaryocytes and mature from the bone marrow. After stimulated, platelets produce nitric oxide to inhibit their own activation and aggregation. Pathologically, the injury of endothelial cells activates platelets and changes their functions. The release of inflammatory mediators and cytokines induces and enhances the development and progression of atherosclerosis, and thereby promotes the occurrence of erectile dysfunction. Besides, platelets and their related functional parameters may serve as important indicators in the diagnosis and treatment of erectile dysfunction.
Atherosclerosis
;
etiology
;
Blood Platelets
;
physiology
;
Cytokines
;
metabolism
;
Endothelial Cells
;
Erectile Dysfunction
;
etiology
;
Humans
;
Male
;
Nitric Oxide
;
biosynthesis
;
Platelet Activation
6.Roles of PKCα on the biological functions of T cells.
Li-Fen YANG ; Hui-Min KONG ; Xiao-Qing ZHANG ; Fei YIN
Chinese Journal of Contemporary Pediatrics 2015;17(12):1354-1359
OBJECTIVETo study the roles of PKCα on the proliferation, apoptosis, differentiation, cytokine production and inducible regulatory T cell (iTreg) induction of T cells.
METHODST cells from WT (PKCα⁺/⁺) or PKCα knockout (PKCα⁻/⁻) mice were isolated and cultured in vitro. T cell proliferation and apoptosis were determined using ³H thymidine incorporation and CSFE/Annexin V staining. Cytokines production (IL-2, IL-4, IFN-γ and IL-17) was detected using ELISA. CD4⁺T cells were isolated and cultured in vitro via Th17 or iTreg biased condition. Flow cytometry was used to detect the cell differentiation.
RESULTSThe production of IL-2 upon TCR stimulation increased, while the contents of IL-4 and IL-17 decreased in the PKCα⁻/⁻ group compared with the PKCα⁺/⁺ group. The differentiation rate of Th17 cells decreased, while the iTreg production increased in the PKCα⁻/⁻ group compared with the PKCα⁺/⁺ group.
CONCLUSIONSPKC-α is proinflammatory.
Animals ; Cell Differentiation ; Cytokines ; biosynthesis ; Lymphocyte Activation ; Mice ; Protein Kinase C-alpha ; physiology ; Receptors, Antigen, T-Cell ; physiology ; T-Lymphocytes ; physiology ; Th17 Cells ; immunology
7.Eupatilin Ameliorates Collagen Induced Arthritis.
Juryun KIM ; Youngkyun KIM ; Hyoju YI ; Hyerin JUNG ; Yeri Alice RIM ; Narae PARK ; Seung Min JUNG ; Sung Hwan PARK ; Ji Hyeon JU
Journal of Korean Medical Science 2015;30(3):233-239
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-alpha and then treated with eupatilin, and the levels of IL-6 and IL-1beta mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-alpha treatment of synoviocytes increased the expression of IL-6 and IL-1beta mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Animals
;
Anti-Inflammatory Agents/pharmacology/*therapeutic use
;
Arthritis, Experimental/chemically induced/*drug therapy
;
Arthritis, Rheumatoid/drug therapy/pathology
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Collagen Type II
;
Cytokines/biosynthesis
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use
;
Female
;
Flavonoids/pharmacology/*therapeutic use
;
Humans
;
Inflammation/drug therapy/immunology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Lymph Nodes/cytology
;
Mice
;
Mice, Inbred DBA
;
Monocytes/cytology
;
Osteoclasts/*cytology
;
Plant Extracts/pharmacology
;
RNA, Messenger/biosynthesis
;
Synovial Membrane/cytology
;
T-Lymphocytes, Regulatory/cytology/immunology
;
Tumor Necrosis Factor-alpha/pharmacology
8.Effects on the expression of lipopolysaccharide-induced inflammatory cytokines mediated by bovine bactericidal/permeability-increasing protein.
Nan YAO ; Jie BAI ; Xuemei ZHANG ; Ning ZHANG ; Weidong WU ; Wenrong LI
Chinese Journal of Biotechnology 2015;31(2):195-205
Bactericidal/permeability-increasing protein (BPI) can bind to and specifically neutralize lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria. In order to evaluate potent LPS-neutralizing activity of bovine BPI, the full-length coding sequence (1 449bp) or 714 bp N-terminal coding sequence (BPI714) of bovine BPI was transfected into mHEK293 cells and the expression of LPS-induced inflammatory cytokines was studied. First, we constructed the lentiviral expression vectors and generated mHEK293 cells stably expressing recombinant bovine BPI or BPI714. Then, we detected the expression of IL-8, IL-1β, TNF-α, NF-κB-1 and NF-κB-2 genes by real-time PCR at 0, 1, 3, 6, 12, 24, 36 and 48 h post of LPS induction in cells with or without recombinant bovine BPI or BPI714 ectopic expression, respectively. In response to LPS, the robust abundance of inflammatory cytokines including IL-8, IL-1β, TNF-α and NF-κB-2 was observed in wild type mHEK293 cells at eachtime point. On the contrary, mRNA abundance of IL-8, TNF-α and NF-κB-2 in transfected mHEK293 cells showed no significant changes at each indicated time point. Our results demonstrated that recombinant bovine full length BPI or BPI714 down-regulated the expression of inflammatory cytokines and revealed that either of bovine BPI or BPI714 was able to inhibit the immune respond stimulated by LPS. This study provides evidence for further investigating the mechanisms and application of BPI/LPS-neutralizing activity and also documents a reliable approach for analysis of the efficacy of antibacterial proteins.
Animals
;
Antimicrobial Cationic Peptides
;
chemistry
;
Blood Proteins
;
chemistry
;
Cattle
;
Cytokines
;
biosynthesis
;
HEK293 Cells
;
Humans
;
Interleukins
;
biosynthesis
;
Lipopolysaccharides
;
chemistry
;
NF-kappa B
;
biosynthesis
;
Transfection
;
Tumor Necrosis Factor-alpha
;
biosynthesis
9.Expression and bioactivity of OSF-1 in Pichia pastoris.
Donghong KANG ; Yan WANG ; Hongmei ZHANG ; Xiaoyu FENG ; Wei CAO ; Ping WANG
Chinese Journal of Biotechnology 2014;30(2):274-283
In order to research the biologic activity of osteoblast-stimulating factor 1 (OSF-1), the pPIC9K/osf-1 yeast expression vector was constructed to express and purify OSF-1. Firstly, the osf-1 gene sequence was obtained by artificial synthesis and cloned into Pichia pastoris expression vector pPIC9K to generate pPIC9K/osf-1. The recombinant plasmid was linearized by Sac I and transformed into P. pastoris GS115 by electroporation. Recombinant P. pastoris GS115/ pPIC9K/osf-1 was screened by MD and G418-YPD plates and further identified by PCR. The positive P. pastoris was induced with 1% methanol at 25 degrees C for 96 h. The target protein was analyzed by SDS-PAGE showing a special band about 18 kDa. The target protein was successfully purified from the supernatant of the broth using ion exchange chromatography of SP-Sephadex C-50. The purity of target protein was above 98%. Western blotting appeared a good antigenicity of the purified protein. Bioassay results show that the recombinant protein OSF-1 can promote the differentiation and proliferation of osteoblasts MC3T3-E1. We successfully expressed OSF-1 by recombinant P. pastoris for further development of anti-osteoporosis of research and industrial production of OSF-1.
Blotting, Western
;
Carrier Proteins
;
biosynthesis
;
Chromatography, Affinity
;
Cytokines
;
biosynthesis
;
Electrophoresis, Polyacrylamide Gel
;
Electroporation
;
Pichia
;
metabolism
;
Polymerase Chain Reaction
;
Recombinant Proteins
;
biosynthesis
10.Role of Endoplasmic Reticulum Stress in Rheumatoid Arthritis Pathogenesis.
Yune Jung PARK ; Seung Ah YOO ; Wan Uk KIM
Journal of Korean Medical Science 2014;29(1):2-11
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by abnormal proliferation of synoviocytes, leukocyte infiltration, and angiogenesis. The endoplasmic reticulum (ER) is the site of biosynthesis for all secreted and membrane proteins. The accumulation of unfolded proteins in the ER leads to a condition known as ER stress. Failure of the ER's adaptive capacity results in abnormal activation of the unfolded protein response. Recently, we have demonstrated that ER stress-associated gene signatures are highly expressed in RA synovium and synovial cells. Mice with Grp78 haploinsufficiency exhibit the suppression of experimentally induced arthritis, suggesting that the ER chaperone GRP78 is crucial for RA pathogenesis. Moreover, increasing evidence has suggested that GRP78 participates in antibody generation, T cell proliferation, and pro-inflammatory cytokine production, and is therefore one of the potential therapeutic targets for RA. In this review, we discuss the putative, pathophysiological roles of ER stress and GRP78 in RA pathogenesis.
Animals
;
Arthritis, Rheumatoid/genetics/*pathology
;
Autoantibodies/immunology
;
Cell Proliferation
;
Cytokines/biosynthesis/immunology
;
Endoplasmic Reticulum/immunology/pathology
;
Endoplasmic Reticulum Stress/*immunology
;
Haploinsufficiency/genetics
;
Heat-Shock Proteins/*genetics/*immunology
;
Humans
;
Lymphocyte Activation
;
Mice
;
Neovascularization, Pathologic/genetics
;
Protein Folding
;
Synovial Membrane/cytology
;
T-Lymphocytes/immunology
;
Unfolded Protein Response/*immunology

Result Analysis
Print
Save
E-mail