1.Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice.
Shuang WU ; Qiubing CHEN ; Yalan WANG ; Hao YIN ; Yuan WEI
Journal of Zhejiang University. Medical sciences 2023;52(3):306-317
OBJECTIVES:
To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.
METHODS:
siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.
RESULTS:
Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).
CONCLUSIONS
The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Animals
;
Female
;
Mice
;
Antioxidants/metabolism*
;
Cholesterol/metabolism*
;
Ethanol/pharmacology*
;
Glutathione/pharmacology*
;
Inflammation
;
Lipids/pharmacology*
;
Liver
;
Malondialdehyde/pharmacology*
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Superoxide Dismutase
;
Triglycerides/metabolism*
;
Cytochrome P-450 CYP2E1/metabolism*
2.Extracts of Poria cocos polysaccharides improves alcoholic liver disease in mice via CYP2E1 and NF-κB inflammatory pathways.
Yue-Hang JIANG ; Yue ZHANG ; Yan-Yan WANG ; Wen-Xin ZHANG ; Meng-Wen WANG ; Chao-Qun LIU ; Dai-Yin PENG ; Nian-Jun YU ; Lei WANG ; Wei-Dong CHEN
China Journal of Chinese Materia Medica 2022;47(1):134-140
The present study investigated the effect of extract of Poria cocos polysaccharides(PCP) on cytochrome P450 2 E1(CYP2 E1) and nuclear factor κB(NF-κB) inflammatory signaling pathways in alcoholic liver disease(ALD) mice and explored its protective effect and mechanism. Sixty male C57 BL/6 N mice of SPF grade were randomly divided into a control group, a model group, a positive drug group(bifendate, 200 mg·kg~(-1)), and high-(200 mg·kg~(-1)) and low-dose(50 mg·kg~(-1)) PCP groups. Gao-binge mo-del was induced and the mice in each group were treated correspondingly. Liver morphological and pathological changes were observed and organ index was calculated. Serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were detected. Malondialdehyde(MDA) and superoxide dismutase(SOD) in liver tissues were detected by assay kits. The levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The activation of macrophages was observed by immunofluorescence staining and protein expression of CYP2 E1, Toll-like receptor 4(TLR4), NF-κB p65, and phosphorylated NF-κB p65(p-NF-κB p65) were analyzed by Western blot. The ALD model was properly induced. Compared with the model group, the PCP groups significantly improved the pathological injury of liver tissues. Immunofluorescence staining revealed that compared with the model group, the groups with drug intervention showed decreased macrophages in liver tissues. Additionally, the PCP groups showed reduced ALT, AST, MDA, IL-6, and TNF-α(P<0.05), and potentiated activity of SOD(P<0.01). PCP extract has the protective effect against alcoholic liver injury in mice, and the underlying mechanism may be related to the regulation of the expression of CYP2 E1 and inhibition of TLR4/NF-κB inflammatory signaling pathway to reduce oxidative stress and inflammatory injury, thereby inhibiting the development of ALD.
Animals
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Liver
;
Liver Diseases, Alcoholic/pathology*
;
Male
;
Mice
;
NF-kappa B/metabolism*
;
Plant Extracts/pharmacology*
;
Polysaccharides/pharmacology*
;
Wolfiporia
3.Effects of Gukang Capsules on activity and protein expression of hepatic cytochrome P450 enzymes in rats.
Chang YANG ; Jing LI ; Jia SUN ; Ding-Yan LU ; Shuai-Shuai CHEN ; Yong-Jun LI ; Yong-Lin WANG ; Ting LIU
China Journal of Chinese Materia Medica 2022;47(21):5936-5943
Gukang Capsules are often used in combination with drugs to treat fractures, osteoarthritis, and osteoporosis. Cytochrome P450(CYP450) mainly exists in the liver and participates in the oxidative metabolism of a variety of endogenous and exogenous substances and serves as an important cause of drug-metabolic interactions and adverse reactions. Therefore, it is of great significance to study the effect of Gukang Capsules on the activity and expression of CYP450 for increasing its clinical rational medication and improving the safety of drug combination. In this study, the Cocktail probe method was used to detect the changes in the activities of CYP1A2, CYP3A2, CYP2C11, CYP2C19, CYP2D4, and CYP2E1 in rat liver after treatment with high-, medium-and low-dose Gukang Capsules. The rat liver microsomes were extracted by the calcium chloride method, and protein expression of the above six CYP isoform enzymes was detected by Western blot. The results showed that the low-dose Gukang Capsules could induce CYP3A2 and CYP2D4 in rats, medium-dose Gukang Capsules had no effect on them, and high-dose Gukang Capsules could inhibit them in rats. The high-dose Gukang Capsules did not affect CYP2C11 in rats, but low-and medium-dose Gukang Capsules could induce CYP2C11 in rats. Gukang Capsules could inhibit CYP2C19 in rats and induce CYP1A2 in a dose-independent manner, but did not affect CYP2E1. If Gukang Capsules were co-administered with CYP1A2, CYP2C19, CYP3A2, CYP2C11, and CYP2D4 substrates, the dose should be adjusted to avoid drug interactions.
Rats
;
Animals
;
Cytochrome P-450 CYP1A2/metabolism*
;
Cytochrome P-450 CYP2C19
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Rats, Sprague-Dawley
;
Cytochrome P-450 Enzyme System/metabolism*
;
Microsomes, Liver
;
Liver
;
Cytochrome P-450 CYP3A/metabolism*
4.Liver Tissue-specific Genes IGFALS,CYP3A4,SLC22A1 and CYP2E1 May be Associated with Poor Prognosis of Liver Cancer.
Yan-Yan ZHANG ; Jing CAO ; Xiao-Tong CHEN ; Jun-Hui CHEN ; Yu-Bao ZHENG
Acta Academiae Medicinae Sinicae 2021;43(3):371-381
Objective To explore the function and mechanism of related genes in the occurrence and development of liver cancer, and the possibility of key genes as potential biomarkers and prognostic indicators for the treatment of liver cancer.Methods We selected 4 datasets(GSE57957, GSE121248, GSE36376 and GSE14520)from the GEO database.With
Biomarkers, Tumor/genetics*
;
Carrier Proteins
;
Computational Biology
;
Cytochrome P-450 CYP2E1
;
Cytochrome P-450 CYP3A
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Gene Regulatory Networks
;
Glycoproteins
;
Humans
;
Liver Neoplasms/genetics*
;
Prognosis
;
Protein Interaction Maps
5.Comparison of toxic responses to acetaminophen challenge in ICR mice originating from different sources
Tae Bin JEONG ; Joung Hee KIM ; Sou Hyun KIM ; Seunghyun LEE ; Seung Won SON ; Yong LIM ; Joon Yong CHO ; Dae Youn HWANG ; Kil Soo KIM ; Jae Hwan KWAK ; Young Suk JUNG
Laboratory Animal Research 2019;35(3):107-113
Acetaminophen (APAP) is the most common antipyretic analgesic worldwide. However, APAP overdose causes severe liver injury, especially centrilobular necrosis, in humans and experimental animals. At therapeutic dosage, APAP is mainly metabolized by sulfation and glucuronidation, and partly by cytochrome P450–mediated oxidation. However, APAP overdose results in production of excess reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), by cytochromes P450; NAPQI overwhelms the level of glutathione (GSH), which could otherwise detoxify it. NAPQI binds covalently to proteins, leading to cell death. A number of studies aimed at the prevention and treatment of APAP-induced toxicity are underway. Rats are more resistant than mice to APAP hepatotoxicity, and thus mouse models are mainly used. In the present study, we compared the toxic responses induced by APAP overdose in the liver of ICR mice obtained from three different sources and evaluated the usability of the Korl:ICR stock established by the National Institute of Food and Drug Safety Evaluation in Korea. Administration of APAP (300 mg/kg) by intraperitoneal injection into male ICR mice enhanced CYP2E1 protein expression and depleted hepatic GSH level 2 h after treatment accompanied with significantly increased level of hepatic malondialdehyde, a product of lipid peroxidation. Regardless of the source of the mice, hepatotoxicity, as evidenced by activity of serum alanine aminotransferase, increased from 8 h and peaked at 24 h after APAP treatment. In summary, hepatotoxicity was induced after the onset of oxidative stress by overdose of APAP, and the response was the same over time among mice of different origins.
Acetaminophen
;
Alanine Transaminase
;
Animals
;
Cell Death
;
Cytochrome P-450 CYP2E1
;
Cytochromes
;
Glutathione
;
Humans
;
Injections, Intraperitoneal
;
Korea
;
Lipid Peroxidation
;
Liver
;
Male
;
Malondialdehyde
;
Mice
;
Mice, Inbred ICR
;
Necrosis
;
Oxidative Stress
;
Rats
6.Rdh13 deficiency weakens carbon tetrachloride-induced liver injury by regulating Spot14 and Cyp2e1 expression levels.
Xiaofang CUI ; Benting MA ; Yan WANG ; Yan CHEN ; Chunling SHEN ; Ying KUANG ; Jian FEI ; Lungen LU ; Zhugang WANG
Frontiers of Medicine 2019;13(1):104-111
Mitochondrion-localized retinol dehydrogenase 13 (Rdh13) is a short-chain dehydrogenase/reductase involved in vitamin A metabolism in both humans and mice. We previously generated Rdh13 knockout mice and showed that Rdh13 deficiency causes severe acute retinal light damage. In this study, considering that Rdh13 is highly expressed in mouse liver, we further evaluated the potential effect of Rdh13 on liver injury induced by carbon tetrachloride (CCl). Although Rdh13 deficiency showed no significant effect on liver histology and physiological functions under regular culture, the Rdh13 mice displayed an attenuated response to CCl-induced liver injury. Their livers also exhibited less histological changes and contained lower levels of liver-related metabolism enzymes compared with the livers of wild-type (WT) mice. Furthermore, the Rdh13 mice had Rdh13 deficiency and thus their liver cells were protected from apoptosis, and the quantity of their proliferative cells became lower than that in WTafter CCl exposure. The ablation of Rdh13 gene decreased the expression levels of thyroid hormone-inducible nuclear protein 14 (Spot14) and cytochrome P450 (Cyp2e1) in the liver, especially after CCl treatment for 48 h. These data suggested that the alleviated liver damage induced by CCl in Rdh13 mice was caused by Cyp2e1 enzymes, which promoted reductive CCl metabolism by altering the status of thyroxine metabolism. This result further implicated Rdh13 as a potential drug target in preventing chemically induced liver injury.
Alcohol Oxidoreductases
;
deficiency
;
genetics
;
Animals
;
Carbon Tetrachloride Poisoning
;
enzymology
;
Chemical and Drug Induced Liver Injury
;
enzymology
;
pathology
;
Cytochrome P-450 CYP2E1
;
metabolism
;
Female
;
Immunohistochemistry
;
Liver
;
drug effects
;
enzymology
;
pathology
;
Male
;
Mice
;
Mice, 129 Strain
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Nuclear Proteins
;
metabolism
;
Transcription Factors
;
metabolism
7.Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl₄-Induced Liver Injury in Sprague-Dawley Rats.
Jae Hyuk BYUN ; Jun KIM ; Se Young CHOUNG
Biomolecules & Therapeutics 2018;26(2):218-223
The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride (CCl₄)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of CCl₄ (1.5 ml/kg, twice a week for 14 days). The administration of CCl₄ exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2′-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to CCl₄ induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in CCl₄ induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by CCl₄ via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.
Animals
;
Carbon Tetrachloride
;
Cytochrome P-450 CYP2E1
;
DNA Damage
;
Food Habits
;
Gene Expression
;
Glutathione
;
Glutathione Peroxidase
;
Hep G2 Cells
;
Incidence
;
Injections, Intraperitoneal
;
Lipid Peroxidation
;
Liver*
;
Rats
;
Rats, Sprague-Dawley*
;
Real-Time Polymerase Chain Reaction
;
Silymarin
;
Xenobiotics
8.A Fruit Extract of Paeonia anomala Attenuates Chronic Alcohol-induced Liver Damage in Rats.
Sarangerel OIDOVSAMBUU ; Ji Ho YUN ; Kyungsu KANG ; Batsuren DULAMJAV ; Jigjidsuren TUNSAG ; Eui Jeong NAM ; Chu Won NHO
Natural Product Sciences 2016;22(4):231-237
Prolonged alcohol consumption causes alcoholic liver damage due to the generation of reactive oxygen species, the accumulation of fatty acids, and an increase in inflammatory cytokines in the liver. In this study, the protective effect of a fruit extract of Paeonia anomala (FEPA) against chronic alcohol-induced liver damage was evaluated in Sprague-Dawley rats fed an ethanol or a control Lieber-DeCarli diet for 5 weeks to induce alcoholic liver damage. FEPA (50, 25, and 10 mg/kg body weight/day) as well as the reference control silymarin (25 mg/kg body weight/day) were administered along with the ethanol diet. FEPA protected against increases in alanine aminotransferase and aspartate aminotransferase in serum and attenuated alcohol-induced increases in triglycerides, tumor necrosis factor alpha, thiobarbituric acid-reactive substances, and cytochrome P450 2E1 enzyme activity in the liver compared with the group treated with ethanol only. Anti-oxidative defenses such as the total glutathione level and glutathione peroxidase activity were increased by FEPA treatment. These results suggest that FEPA exerts protective effects against chronic alcohol-induced liver damage by attenuating hepatosteatosis and pro-inflammatory cytokine production and enhancing anti-oxidative defense mechanisms in the liver.
Alanine Transaminase
;
Alcohol Drinking
;
Alcoholics
;
Animals
;
Aspartate Aminotransferases
;
Cytochrome P-450 CYP2E1
;
Cytokines
;
Defense Mechanisms
;
Diet
;
Ethanol
;
Fatty Acids
;
Fruit*
;
Glutathione
;
Glutathione Peroxidase
;
Humans
;
Liver*
;
Paeonia*
;
Rats*
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
Silymarin
;
Triglycerides
;
Tumor Necrosis Factor-alpha
9.Induction of rat hepatic CYP2E1 expression by arecoline in vivo.
Xiang-tao HUANG ; Run-mei XIAO ; Ming-feng WANG ; Jun-jun WANG ; Yong CHEN
Acta Pharmaceutica Sinica 2016;51(1):153-156
The regulation mechanism of arecoline on rat hepatic CYP2E1 was studied in vivo. After oral administration of arecoline hydrobromide (AH; 4, 20 and 100 mg x kg(-1) x d(-1)) to rats for one week, the hepatic CYP2E1 mRNA level remained unchanged, but the hepatic CYP2E1 protein content was dose-dependently increased. Additionally, although the hepatic CYP2E1 activity was induced by AH treatment, the induction was attenuated with the increase in dosage. The results indicate that the effect of arecoline on rat hepaticdoes not involve transcriptional activation of the gene, but largely involves the stabilization of CYP2E1 protein against degradation or increased efficiency of CYP2E1 mRNA translation, and additionally involve the post- ranslational modification of CYP2E1 protein. Furthermore, the CYP2E1 response is fairly equal among the different species, the induction of rat hepatic CYP2E1 by arecoline suggests that there is a risk of metabolic interaction among the substrate drugs of CYP2E1 in betel-quid use human.
Animals
;
Arecoline
;
pharmacology
;
Cytochrome P-450 CYP2E1
;
metabolism
;
Cytochrome P-450 CYP2E1 Inducers
;
pharmacology
;
Humans
;
Liver
;
drug effects
;
metabolism
;
RNA, Messenger
;
Rats
10.Inhibiting effects of three components of Astragalus membranaceus on oxidative stress in Chang Liver cells.
Jian LI ; Lin HAN ; Yu-fang MA ; Yi-fan HUANG
China Journal of Chinese Materia Medica 2015;40(2):318-323
The main objective of this research is to investigate the effects of astragaloside IV, calycosin separately glucoside, formononetin on oxidative stress in Chang Liver cells induced by H2O2. In the experiments, Chang Liver cells (a kind of normal human hepatocytes) were used as the research object, bifendate which has a clear hepatoprotective effect was used as the positive control drug, then the oxidative damage model of Chang Liver cells were established by H2O2. Cells were divided into six groups: blank control group, oxidative stress group, astragaloside IV group, calycosin separately glucoside group, formononetin group and positive control group. Then endogenous antioxidant system related indexes were detected by micro plate and colorimetric method; intracellular reactive oxygen species (ROS) were detected by DCFH-DA fluorescent probe; and the expressions of CYP2E1 were evaluated by liver microsomes, mRNA, and protein, respectively with spectrophotometry, Real-time PCR method, and Western blot technique. Results showed that H2O2 decreased antioxidant activity, and increased ROS level and expression of CYP2E1. The above oxidative stress status had been changed with protections of the three components of Astragalus membranaceus (compared with oxidative stress group, P < 0.05, P < 0.01), which taken as a whole had equivalent effects as the drug of positive control group( bifendate). Taken together, three Astragalus membranaceus ingredients all had significant or extremely significant inhibiting effects on oxidative damaged Chang Liver cells which were induced by H2O2, and the oxidative damage of Chang Liver cells had been relieved.
Astragalus membranaceus
;
chemistry
;
Cells, Cultured
;
Cytochrome P-450 CYP2E1
;
metabolism
;
Humans
;
Isoflavones
;
pharmacology
;
Liver
;
drug effects
;
Oxidative Stress
;
drug effects
;
Reactive Oxygen Species
;
metabolism
;
Saponins
;
pharmacology
;
Triterpenes
;
pharmacology

Result Analysis
Print
Save
E-mail