1.Bioactivity-guided discovery of antiviral templichalasins A‒C from the endophytic fungus Aspergillus templicola.
Teng CAI ; Jingzu SUN ; Wenxuan CHEN ; Qiang HE ; Baosong CHEN ; Yulong HE ; Peng ZHANG ; Yanhong WEI ; Hongwei LIU ; Xiaofeng CAI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):754-761
The bioactivity-guided isolation of potentially active natural products has been widely utilized in pharmaceutical discovery. In this study, by screening fungal extracts against coxsackievirus B3 (CVB3), three new aspochalasins, templichalasins A‒C (1‒3), along with six known aspochalasins (4‒9) were isolated from an active extract derived from the endophytic fungus Aspergillus templicola LHWf045. Compound 1 features a unique 5/6/5/7/5 pentacyclic ring system, while compounds 2 and 3 possess unusual 5/6/6/7 tetracyclic skeletons. Their structures were characterized through extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Additionally, we demonstrated that compound 4 can be readily converted into compounds 1‒3 under mild acidic conditions and proposed a plausible mechanism for this conversion. Bioactivity evaluation of compounds 1‒9 against CVB3 revealed the inhibitory effects of all compounds against the virus. Notably, compound 9 exhibited superior antiviral activity, surpassing the commercial drug ribavirin in selectivity index (SI) value.
Antiviral Agents/isolation & purification*
;
Aspergillus/chemistry*
;
Molecular Structure
;
Enterovirus B, Human/drug effects*
;
Endophytes/chemistry*
;
Cytochalasins/isolation & purification*
;
Drug Discovery
;
Humans
2.A new cytochalasin from endophytic Phomopsis sp. IFB-E060.
Li SHEN ; Qian LUO ; Zhi-Ping SHEN ; Ling-Yu LI ; Xiao-Jun ZHANG ; Zhong-Qi WEI ; Yi FU ; Yong-Chun SONG ; Ren-Xiang TAN
Chinese Journal of Natural Medicines (English Ed.) 2014;12(7):512-516
AIM:
To study the chemical constituents of the solid culture of the endophyte Phomopsis sp. IFB-E060 in Vatica mangachapoi.
METHOD:
Isolation and purification were performed through silica gel column chromatography, gel filtration over Sephadex LH-20, ODS column chromatography, and HPLC. Structures of the isolated compounds were elucidated by a combination of spectroscopic analyses (UV, CD, IR, MS, 1D, and 2D NMR). The cytotoxicity of the isolates was evaluated in vitro by the MTT method against the human hepatocarcinoma cell line SMMC-7721.
RESULTS:
Five compounds were isolated from the solid culture of the endophyte Phomopsis sp. IFB-E060 and their structures were identified as 18-methoxy cytochalasin J (1), cytochalasin H (2), (22E, 24S)-cerevisterol (3), ergosterol (4), and nicotinic acid (5). Compound 1 had an inhibition rate of 24.4% at 10 μg·mL(-1) and 2 had an IC50 value of 15.0 μg·mL(-1), while a positive control 5-fluorouracil had an inhibition rate of 28.7% at 10 μg·mL(-1).
CONCLUSION
18-Methoxy cytochalasin J (1), produced by endophytic Phomopsis sp. IFB-E060, is a new cytochalasin with weak cytotoxicity to the human hepatocarcinoma cell line SMMC-7721.
Ascomycota
;
chemistry
;
isolation & purification
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Cytochalasins
;
chemistry
;
isolation & purification
;
toxicity
;
Endophytes
;
chemistry
;
isolation & purification
;
Humans
;
Magnoliopsida
;
microbiology
;
Molecular Structure
;
Plant Bark
;
microbiology

Result Analysis
Print
Save
E-mail