1.Emerging roles of RNA N4-acetylcytidine modification in reproductive health.
Zibaguli WUBULIKASIMU ; Hongyu ZHAO ; Fengbiao MAO ; Xiaolu ZHAO
Protein & Cell 2025;16(6):458-477
N4-acetylcytidine (ac4C), an emerging posttranscriptional RNA modification, plays a pivotal role in epigenetic regulation. Ac4C is detected not only in tRNA, rRNA, and mRNA, but also in miRNA, lncRNA, viral RNA, and even DNA. Functionally, ac4C stabilizes mRNA, enhances protein translation fidelity, and impacts various biological processes and diseases such as cancer, inflammation, immune regulation, neural diseases, osteogenic differentiation, cardiovascular diseases, viral infections, and replication. Current research primarily focuses on ac4C's roles in cancer progression and immunity, with emerging findings in gynecological diseases and reproduction. However, a comprehensive understanding of ac4C's implications in reproductive health is lacking. This review provides a historical perspective on ac4C's discovery and detection methods, elucidates its functions in reproductive development and gynecological disorders, and offers insights for further research in reproductive health. This review aims to pave the way for innovative therapeutic approaches and precise diagnostic tools tailored to this field.
Humans
;
Reproductive Health
;
Cytidine/genetics*
;
Animals
;
Female
;
RNA Processing, Post-Transcriptional
;
Epigenesis, Genetic
;
RNA/genetics*
2.Concomitant use of immobilized uridine-cytidine kinase and polyphosphate kinase for 5'-cytidine monophosphate production.
Sijia WU ; Jie LI ; Chenlong HU ; Junyu TIAN ; Tong ZHANG ; Ning CHEN ; Xiaoguang FAN
Chinese Journal of Biotechnology 2020;36(5):1002-1011
Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²⁺ to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.
Cytidine Monophosphate
;
metabolism
;
Escherichia coli
;
genetics
;
Industrial Microbiology
;
methods
;
Phosphotransferases (Phosphate Group Acceptor)
;
metabolism
;
Uridine Kinase
3.Establishment and identification of cell lines from type O blood Korean native pigs and their efficiency in supporting embryonic development via somatic cell nuclear transfer
Anukul TAWEECHAIPAISANKUL ; Geon A KIM ; Jun Xue JIN ; Su Cheong YEOM ; Byeong Chun LEE
Journal of Veterinary Science 2018;19(4):492-499
Due to their similarities with humans in anatomy, physiology, and genetics miniature pigs are becoming an attractive model for biomedical research. We aim to establish and evaluate blood type O cells derived from Korean native pig (KNP), a typical miniature pig breed in Korea. Ten cell lines derived from 8 KNP piglets and one adult female KNP (kidney and ear tissues) were established. To confirm the presence of blood type O, genomic DNA, fucosyltransferase (FUT) expression, and immunofluorescence staining were examined. Additionally, fluorescence-activated cell sorting and somatic cell nuclear transfer were performed to investigate the normality of the cell lines and to evaluate their effectiveness in embryo development. We found no significant bands corresponding to specific blood group A, and no increase in FUT expression in cell lines derived from piglets No. 1, No. 4, No. 5, No. 8, and the adult female KNP; moreover, they showed normal levels of expression of α 1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase. There was no significant difference in embryo development between skin and kidney fibroblasts derived from the blood type O KNPs. In conclusion, we successfully established blood type O KNP cell lines, which may serve as a useful model in xenotransplantation research.
Adult
;
Cell Line
;
Cytidine
;
DNA
;
Ear
;
Embryonic Development
;
Female
;
Fibroblasts
;
Flow Cytometry
;
Fluorescent Antibody Technique
;
Genetics
;
Heterografts
;
Humans
;
Kidney
;
Korea
;
Physiology
;
Pregnancy
;
Skin
;
Swine
;
Swine, Miniature
;
Transplantation, Heterologous
4.Concomitant AID Expression and BCL7A Loss Associates With Accelerated Phase Progression and Imatinib Resistance in Chronic Myeloid Leukemia.
Nae YU ; Saeam SHIN ; Jong Rak CHOI ; Yoonjung KIM ; Kyung A LEE
Annals of Laboratory Medicine 2017;37(2):177-179
No abstract available.
Aged
;
Cytidine Deaminase/*genetics/metabolism
;
Dasatinib/therapeutic use
;
Disease Progression
;
Drug Resistance, Neoplasm
;
Fusion Proteins, bcr-abl/genetics/metabolism
;
Humans
;
Imatinib Mesylate/*therapeutic use
;
In Situ Hybridization, Fluorescence
;
Karyotype
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*drug therapy
;
Male
;
Microfilament Proteins/*genetics/metabolism
;
Oncogene Proteins/*genetics/metabolism
;
Protein Kinase Inhibitors/*therapeutic use
5.Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Ying SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Zhen ZHANG ; Yuxi CHEN ; Chenhui DING ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2017;8(8):601-611
Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.
APOBEC-1 Deaminase
;
genetics
;
metabolism
;
Animals
;
Bacterial Proteins
;
genetics
;
metabolism
;
Base Sequence
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cytidine
;
genetics
;
metabolism
;
Embryo Transfer
;
Embryo, Mammalian
;
Endonucleases
;
genetics
;
metabolism
;
Gene Editing
;
methods
;
HEK293 Cells
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microinjections
;
Plasmids
;
chemistry
;
metabolism
;
Point Mutation
;
RNA, Guide
;
genetics
;
metabolism
;
Thymidine
;
genetics
;
metabolism
;
Zygote
;
growth & development
;
metabolism
;
transplantation
6.Recent advances in the study of mechanism of APOBEC3G against virus.
Yan-Ping ZHU ; Jian-Dong JIANG ; Zong-Gen PENG
Acta Pharmaceutica Sinica 2014;49(1):30-36
APOBEC3 is a class of cytidine deaminase, which is considered as a new member of the innate immune system, and APOBEC3G belongs to this family. The research about APOBEC3G is a new direction of innate immune defense mechanism against virus. APOBEC3G has the restrictive activity on many viral replications, which deaminates dC to dU in the viral genome and then induces extensive hypermutation. APOBEC3G can also interrupt viral replication at several phases such as reverse transcription, replication, nucleocapsid and so on by non-deamination mechanisms. However, virus can encode viral proteins to counteract the restriction activity of APOBEC3G. Elucidation of the antagonistic interaction between APOBEC3G and the virus will be contributed to development of new antiviral drugs in the future.
APOBEC-3G Deaminase
;
Animals
;
Cytidine Deaminase
;
genetics
;
metabolism
;
DNA Replication
;
Deamination
;
HIV-1
;
physiology
;
Hepacivirus
;
genetics
;
physiology
;
Hepatitis B virus
;
genetics
;
physiology
;
Humans
;
Paramyxoviridae
;
genetics
;
physiology
;
Retroviridae
;
physiology
;
Virus Replication
;
vif Gene Products, Human Immunodeficiency Virus
;
metabolism
7.Association between APOBEC3G polymorphisms and susceptibility to chronic hepatitis B.
Zhiyi YOU ; Fuyuan ZHOU ; Xionghu WANG ; Chuming CHEN ; Junhua ZHOU ; Dejian ZHAO ; Guifang HU
Journal of Southern Medical University 2013;33(5):769-771
OBJECTIVETo investigate the association between rs185983011 single-nucleotide polymorphisms (SNP) of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and the susceptibility to chronic hepatitis B.
METHODSThe blood samples were collected from 186 healthy subjects and 159 patients with chronic hepatitis B. The rs185983011 SNP was detected and genotyped by sequencing with Sanger's method to analyze the relationship between rs185983011 SNP and chronic hepatitis B.
RESULTSOnly C/C and C/T genotypes of the alleles of rs185983011 SNP were found in the tested subjects, and the C/C genotype was predominant (97.7%). The distribution frequencies of rs185983011 SNP genotypes and alleles showed no significant difference between healthy subjects and patients with chronic hepatitis B (P>0.05).
CONCLUSIONThe predominant genotype of rs185983011 SNP of APOBEC3G is C/C in the tested subjects, and rs185983011 SNP does not appear to associate with the susceptibility to chronic hepatitis B.
APOBEC-3G Deaminase ; Adult ; Alleles ; Case-Control Studies ; Cytidine Deaminase ; genetics ; Female ; Genetic Predisposition to Disease ; Genotype ; Hepatitis B, Chronic ; genetics ; Humans ; Male ; Polymorphism, Single Nucleotide ; Young Adult
8.Association of polymorphisms of cytosine arabinoside-metabolizing enzyme gene with therapeutic efficacy for acute myeloid leukemia.
Pei-Pei XU ; Bao-An CHEN ; Ji-Feng FENG ; Lu CHENG ; Guo-Hua XIA ; Yu-Feng LI ; Jun QIAN ; Jia-Hua DING ; Zu-Hong LU ; Xue-Mei WANG ; Ke XU ; Margaret SCHULTZ
Chinese Medical Journal 2012;125(12):2137-2143
BACKGROUNDThe cytosine arabinoside (Ara-C)-based chemotherapy is the major remedial measure for acute myeloid leukemia (AML). Deoxycytidine kinase (DCK) and cytidine deaminase (CDA) are the key enzymes in the metabolism of Ara-C. Many single nucleotide polymorphisms (SNPs) and haplotypes of DCK and CDA, which contribute to susceptibility to Ara-C, have been identified in Africans and Europeans. However, there has been no report about the relation among three SNPs in DCK (rs115543896, rs72552079, and rs111454937) and two SNPs in CDA (rs2072671 and rs60369023), and their clinical response to Ara-C for a Chinese population. In this study, we aimed to investigate whether these five SNPs are associated with the therapeutic outcomes of Ara-C-based chemotherapy regimens in patients with AML.
METHODSA total of 151 Chinese patients with AML were enrolled in our study. SNPs genotyping were performed using the MassARRAY system by means of the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) method.
RESULTSThe results illustrated that DCKrs111454937 AA genotype was more frequent in patients with higher platelet count, and A allele frequency was significantly higher in the group £40 years, lower white blood cell (WBC) count patients group and the group with platelet counts > 60'10(9)/L. Meanwhile, both DCKrs72552079 TC (OR = 1.225, 95%CI = 1.225 - 9.851, P = 0.0192) and CDArs60369023 GA (OR = 9.851, 95%CI = 1.31 - 77.93, P = 0.0263) significantly improved Ara-C-based chemotherapy response. While DCKrs11554389 AA (OR = 0.147, 95%CI = 0.027 - 0.801, P = 0.0267) was associated with the decrease of Ara-C-based chemotherapy response.
CONCLUSIONIt is evident that the DCK and CDA polymorphisms might be the important markers for the AML patients' therapy outcomes in a Chinese population.
Adolescent ; Adult ; Aged ; Aged, 80 and over ; Cytarabine ; therapeutic use ; Cytidine Deaminase ; genetics ; Deoxycytidine Kinase ; genetics ; Female ; Gene Frequency ; genetics ; Humans ; Leukemia, Myeloid, Acute ; drug therapy ; genetics ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; genetics ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Treatment Outcome ; Young Adult
9.Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.
Shaopeng CHEN ; Junkang QIU ; Chuan CHEN ; Chunchun LIU ; Yuheng LIU ; Lili AN ; Junying JIA ; Jie TANG ; Lijun WU ; Haiying HANG
Protein & Cell 2012;3(6):460-469
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.
Animals
;
Antibody Affinity
;
Cells, Cultured
;
Cytidine Deaminase
;
genetics
;
metabolism
;
HEK293 Cells
;
Humans
;
Immunoglobulin Variable Region
;
genetics
;
immunology
;
Mice
;
Mutation
;
Single-Chain Antibodies
;
chemistry
;
genetics
;
immunology
;
Somatic Hypermutation, Immunoglobulin
;
genetics
;
immunology
;
Tumor Necrosis Factor-alpha
;
immunology
10.Expression of Gemcitabine-resistance-related gene and polymorphism of ribonucleotide reductase M1 gene promoter in Gemcitabine-resistant A549/Gem and NCI-H460/Gem cell lines.
Xiao-qing LIU ; Wei-xia WANG ; Li LIN ; San-tai SONG
Chinese Journal of Oncology 2010;32(1):17-21
OBJECTIVETo assay the expression of cytidine deaminase (CDA), ribonucleotide reductase subunit 1 (RRM1), phosphatase and tensin homologue deleted from chromosome 10 (PTEN), excision repair cross-complementation group 1 (ERCC1), deoxycytidine kinase (dCK) and RRM1(-)37A/C polymorphism, which have been shown relevant to gemcitabine resistance in two human gemcitabine-resistant non-small cell lung cancer cell lines A549/Gem and NCI-H460/Gem, so as to make clear how do they vary during the course of acquiring resistance to gemcitabine.
METHODSThe human gemcitabine-resistant non-small cell lung cancer cell lines A549/Gem and NCI-H460/Gem were established in our Department by repeated clinical serum peak concentration and gradually increasing doses. Real-time fluorescent quantitative PCR was used to examine the expression of CDA, RRM1, PTEN, ERCC1, dCK and RRM1(-)37A/C polymorphism in those cell lines at different time points during their induction process.
RESULTSThe resistance indexes of A549/Gem and NCI-H460/Gem cells reached 163.228 and 181.684, and then remained stable at 115.297 and 129.783, respectively. The expression of CDA, RRM1, PTEN and ERCC1 varied along with the changing gemcitabine resistance indexes, but expression of dCK did not change apparently. The wild type promoter was able to amplify the genomic DNA in different induction stages of A549/Gem and NCI-H460/Gem cells, but allelotype did not, indicating that the gene type of A549/Gem, NCI-H460/Gem and their parental cells remaining still wild type.
CONCLUSIONCompared with their parental cells, the expressions of CDA, RRM1, PTEN and ERCC1 in human gemcitabine-resistant non-small cell lung cancer cell lines A549/Gem and NCI-H460/Gem rise, the expression of dCK changes inapparently, therefore, their gene type are remaining wild type.
Antimetabolites, Antineoplastic ; pharmacology ; Carcinoma, Large Cell ; genetics ; metabolism ; pathology ; Carcinoma, Non-Small-Cell Lung ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Cytidine Deaminase ; genetics ; metabolism ; DNA-Binding Proteins ; genetics ; metabolism ; Deoxycytidine ; analogs & derivatives ; pharmacology ; Deoxycytidine Kinase ; genetics ; metabolism ; Drug Resistance, Neoplasm ; Endonucleases ; genetics ; metabolism ; Humans ; Lung Neoplasms ; genetics ; metabolism ; pathology ; PTEN Phosphohydrolase ; genetics ; metabolism ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; RNA, Messenger ; metabolism ; Tumor Suppressor Proteins ; genetics ; metabolism

Result Analysis
Print
Save
E-mail