1.Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.
Chunxue YU ; Zixuan XIA ; Zhipeng XU ; Xiyang TANG ; Wenjuan DING ; Jihua WEI ; Danmei TIAN ; Bin WU ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):119-128
Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine. The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, electronic circular dichroism (ECD) calculations, 13C NMR calculation, modified Mosher's method, and chemical derivatization. Investigation of anti-inflammatory activities revealed that compounds 7-9, 11, 12, 14, 15, and 18 exhibited significant suppressive effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine macrophage RAW264.7 cells, with IC50 values ranging from 0.44 to 4.40 μmol·L-1. Furthermore, these bioactive compounds were found to suppress the expression of inflammation-related proteins, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), NLR family pyrin domain-containing protein 3 (NLRP3), and nuclear factor kappa-B (NF-κB). Additional studies demonstrated that the novel compound 7 possessed potent anti-inflammatory activity by inhibiting the transcription of inflammation-related genes, downregulating the expression of inflammation-related proteins, and inhibiting the release of inflammatory cytokines, indicating its potential application in the treatment of inflammatory diseases.
Penicillium/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Nitric Oxide/metabolism*
;
Hydrothermal Vents/microbiology*
;
Macrophages/immunology*
;
Molecular Structure
;
Nitric Oxide Synthase Type II/immunology*
;
Cyclooxygenase 2/immunology*
;
Geologic Sediments/microbiology*
;
NF-kappa B/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
2.Five new meroterpenoids from Rhododendron anthopogonoides and their anti-inflammatory activity.
Mengtian LI ; Norbu KELSANG ; Yongqin ZHAO ; Wensen LI ; Feng ZHOU ; PEMA ; Lu CUI ; Xianjie BAO ; Qian WANG ; Xin FENG ; Minghua YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):881-887
Five meroterpenoids, rhodonoids K-M (1-2), daurichromene E (3), and grifolins A-B (4-5), together with seven known compounds (6-12), were isolated from Rhododendron anthopogonoides. The chemical structures of these compounds were elucidated through comprehensive analysis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), ultraviolet (UV), infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) data. Their absolute configurations were determined by comparing experimental electronic circular dichroism (ECD) spectra with computed values. Notably, compounds 1 and 3 demonstrated significant inhibitory effects on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. These compounds markedly suppressed the mRNA expressions of inflammatory factors, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) while also down-regulating the protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2).
Mice
;
Rhododendron/chemistry*
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Terpenes/isolation & purification*
;
Molecular Structure
;
Tumor Necrosis Factor-alpha/immunology*
;
Cyclooxygenase 2/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Macrophages/immunology*
;
Interleukin-6/immunology*
;
Lipopolysaccharides
;
Interleukin-1beta/immunology*
3.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides
4.Synthesis and evaluation of 2-cyano-3, 12-dioxooleana-1, 9(11)-en-28-oate-13β, 28-olide as a potent anti-inflammatory agent for intervention of LPS-induced acute lung injury.
Yi MOU ; Yan-Lin JIAN ; Tong CHEN ; Zhang-Jian HUANG ; Yi-Xue QIAO ; Si-Xun PENG ; Da-Yong ZHANG ; Hui JI ; Yi-Hua ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(5):347-354
The present study was designed to synthesize 2-Cyano-3, 12-dioxooleana-1, 9(11)-en-28-oate-13β, 28-olide (1), a lactone derivative of oleanolic acid (OA) and evaluate its anti-inflammatory activity. Compound 1 significantly diminished nitric oxide (NO) production and down-regulated the mRNA expression of iNOS, COX-2, IL-6, IL-1β, and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Further in vivo studies in murine model of LPS-induced acute lung injury (ALI) showed that 1 possessed more potent protective effects than the well-known anti-inflammatory drug dexamethasone by inhibiting myeloperoxidase (MPO) activity, reducing total cells and neutrophils, and suppressing inflammatory cytokines expression, and thus ameliorating the histopathological conditions of the injured lung tissue. In conclusion, compound 1 could be developed as a promising anti-inflammatory agent for intervention of LPS-induced ALI.
Acute Lung Injury
;
drug therapy
;
genetics
;
immunology
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemical synthesis
;
Bronchoalveolar Lavage Fluid
;
immunology
;
Cyclooxygenase 2
;
genetics
;
immunology
;
Female
;
Humans
;
Interleukin-1beta
;
genetics
;
immunology
;
Interleukin-6
;
genetics
;
immunology
;
Lipopolysaccharides
;
adverse effects
;
Lung
;
drug effects
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Neutrophils
;
drug effects
;
immunology
;
Oleanolic Acid
;
administration & dosage
;
analogs & derivatives
;
chemical synthesis
;
Peroxidase
;
genetics
;
immunology
;
RAW 264.7 Cells
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
5.In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis.
Lu-jun LI ; Li-juan YU ; Yan-ci LI ; Meng-yuan LIU ; Zheng-zhi WU
China Journal of Chinese Materia Medica 2015;40(8):1523-1528
This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
chemistry
;
pharmacology
;
Cell Line
;
Cyclooxygenase 2
;
immunology
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Flavanones
;
chemistry
;
pharmacology
;
Free Radical Scavengers
;
chemistry
;
pharmacology
;
Ilex
;
chemistry
;
Interleukin-6
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
Nitric Oxide
;
immunology
;
Tumor Necrosis Factor-alpha
;
immunology
6.Study on anti-inflammation and immunoloregulation effect of Guizhi Fuling capsule ingredients using high content screening.
Yan-ru WANG ; Na LI ; Liang CAO ; Chen-feng ZHANG ; Tuan-jie WANG ; Gang DING ; Zhen-zhong WANG ; Wei XIAO
China Journal of Chinese Materia Medica 2015;40(6):1005-1011
The present study sought to investigate the anti-inflammation and immunoloregulation effect of 17 Guizhi Fuling capsule ingredients. The anti-inflammatory ingredients on LPS-induced RAW264. 7 cell injury were assessed with ELISA and immunofluorescence. The release of IL-1β, TNF-α, PGE2 were detected with ELISA and the expression of COX-2 was detected with immunofluorescence. The effects of them on promoting splenic lymphocyte proliferation were assessed with MTT and Hoechst 33342 staining method. The results showed that 15 ingredients had obviously anti-inflammatory activity on LPS- induced injury and play the immunoloregulation roles. This study suggested that the 15 ingredients may be the active ingredients on pelvic infection.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Capsules
;
pharmacology
;
Cyclooxygenase 2
;
immunology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Immunologic Factors
;
pharmacology
;
Inflammation
;
drug therapy
;
Interleukin-1beta
;
immunology
;
Macrophages
;
drug effects
;
enzymology
;
immunology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Spleen
;
cytology
;
drug effects
;
immunology
;
Tumor Necrosis Factor-alpha
;
immunology
7.Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.
Xin YAO ; Nan CHEN ; Chun-Hua MA ; Jing TAO ; Jian-An BAO ; Zong-Qi CHENG ; Zu-Tao CHEN ; Li-Yan MIAO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):52-58
In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
metabolism
;
Animals
;
Bronchoalveolar Lavage Fluid
;
cytology
;
Cell Count
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression
;
drug effects
;
Ginkgo biloba
;
chemistry
;
Interleukin-1beta
;
analysis
;
Interleukin-6
;
analysis
;
Lipopolysaccharides
;
Lung
;
immunology
;
pathology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Peroxidase
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
Pulmonary Edema
;
Superoxide Dismutase
;
metabolism
;
Transcription Factor RelA
;
genetics
;
metabolism
;
Tumor Necrosis Factor-alpha
;
analysis
8.Discussion of anti-inflammatory mechanism of cyclooxygenase (COX-2) inhibitor in improving cardiovascular safety.
Jin-Long MAO ; Xiao-Yu LI ; Rong SUN
China Journal of Chinese Materia Medica 2014;39(20):4054-4059
The new generation cyclooxygenase (COX-2) inhibitor could reduce the gastrointestinal side effect of NSAID drugs, but eventually increase the cardiovascular risk, because its selective inhibition of COX-2 induces the imbalance between PGI2 and TXA2 and the reduction of vasodilatory NO. Under pathological conditions, active oxygen species (O2-*2, etc) were used to induce endo- thelial dysfunction, activate NF-κB to induce expressions of pro-inflammatory cytokines IL-1β and TNF-α, increase ET-1, TXA2 with vasoconstrictor effect, reduce PGI2 and NO with vasodilatory effect, generate further oxidative damage together with NO, and reduce the bioavailability of NO. NO-NSAIDs and NO-Coxibs drugs raised the level of NO by introducing NO-donor (ONO2). NSAIDs drugs enhanced the anti-inflammatory activity of COX-2 and reduced gastrointestinal side effects by inhibiting selectively COX-2. If antioxidant structures with active ingredients of traditional Chinese medicines were introduced to improve the antioxidant activity of NSAIDs, they could scavenge the active oxygen species to protect the normal function of vascular endothelia and enhance the bioavailability of NO, which is conducive to enhance the cardiovascular safety of cyclooxygenase (COX-2) inhibitor.
Anti-Inflammatory Agents
;
therapeutic use
;
Biomarkers, Pharmacological
;
Cardiovascular Diseases
;
drug therapy
;
enzymology
;
immunology
;
Cyclooxygenase 2
;
immunology
;
Cyclooxygenase 2 Inhibitors
;
adverse effects
;
therapeutic use
;
Drugs, Chinese Herbal
;
therapeutic use
;
Humans
;
NF-kappa B
;
immunology
;
Reactive Oxygen Species
;
immunology
;
Tumor Necrosis Factor-alpha
;
immunology
9.Chemo-preventive effect of Angelica sinensis' supercritical extracts on AOM/DSS-induced mouse colorectal carcinoma associated with inflammation.
Jing AN ; Xiao-Ning LI ; Bo-Chen ZHAO ; Qiong WANG ; Yi LAN ; Qing WU
China Journal of Chinese Materia Medica 2014;39(7):1265-1269
To study the chemo-preventive effect of the supercritical extracts from Angelica sinensis (SFE-AS) on induced colorectal carcinoma in mice by using the AOM/DSS-induced male mice colorectal carcinoma model, and discuss its possible action mechanism. Male Balb/c mice were subcutaneously injected with single dose of azoxymethane (AOM, 10 mg x kg(-1) body weight). One week later, they were given 2% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colorectal carcinoma. Each drug group was orally administered with supercritical extracts from Angelica sinensis at 15, 30, 60 mg x kg(-1) until the 17th week. The tumor incidence rate of the SFE-AS group, mice tumor-bearing quantity and tumor-bearing volume of the SFE-AS group were lower than that of the AOM/DSS model control group, which may be related with the significant reduction of PCNA, COX-2, iNOS in the AOM/DSS-induced mouse colorectal carcinoma model associated with inflammation by SFE-AS. According to the results of this study, SFE-AS showed an intervention effect in the incidence and development of AOM/DSS-induced mouse colorectal carcinoma associated with inflammation, and could be further used in chemo-preventive studies on human colorectal carcinoma.
Angelica sinensis
;
chemistry
;
Animals
;
Azoxymethane
;
adverse effects
;
Colonic Neoplasms
;
chemically induced
;
genetics
;
immunology
;
prevention & control
;
Colorectal Neoplasms
;
chemically induced
;
genetics
;
immunology
;
prevention & control
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Dextran Sulfate
;
adverse effects
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Proliferating Cell Nuclear Antigen
;
genetics
;
immunology
10.Triptolide inhibites Th17 cell differentiation via regulating cyclooxygenase-2/ prostaglandin E2 axis in synovial fibroblasts from rheumatoid arthritis.
An-Ping PENG ; Xiao-Yun WANG ; Jun-Hua ZHUANG
China Journal of Chinese Materia Medica 2014;39(3):536-539
Triptolide (TPT), an active compound extracted from Chinese herb Tripterygium wilfordii , has been used in therapy of rheumatoid arthritis (RA). In this study, after synovial fibroblasts from rheumatoid arthritis (RASFs) were treated with TPT, we investigated its effect on the differentiation of Th17 cells. Firstly, the mRNA level of cyclooxygenase (COX) wad detected by qRT-PCR and the protein level of prostaglandin E2 (PGE2) was tested by ELISA in RASFs treated with different concentrations (0, 10, 50, 100 nmol L-1 ) of TPT. Then after TPT pre-treated RASFs and RA CD4 + T cells wer e co-cultured for 3 days in the presence or absence of PGE2, IL-17 and IFN-gamma production in CD4 T cell subsets were detected by flow cytometry. The results showed TPT decreased the mRNA experssion of COX2 and the secretion of PGE2 in RASFs in a dose-dependent manner(P <0. 05). We further found that differentiation of Thl7 cells was downregulated in a dose-dependent manner, and exogenous PGE2 could reverse the inhibition of Th17 cell differentiation(P <0. 05). Taken together, our results demonstrated that TPT inhibited the mRNA level of COX2 and the secretion of PGE2 in RASFs, which partly led to impaired Th17 cell differentiation in vitro.
Arthritis, Rheumatoid
;
drug therapy
;
enzymology
;
immunology
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Dinoprostone
;
metabolism
;
Diterpenes
;
pharmacology
;
Epoxy Compounds
;
pharmacology
;
Fibroblasts
;
drug effects
;
immunology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Humans
;
Middle Aged
;
Phenanthrenes
;
pharmacology
;
Synovial Fluid
;
drug effects
;
Th17 Cells
;
drug effects
;
pathology

Result Analysis
Print
Save
E-mail