1.Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells.
Cheng-Liu YANG ; Shi-Bo WANG ; Wen-Ping HE ; Jin-Juan LIU
Chinese journal of integrative medicine 2023;29(10):905-913
OBJECTIVE:
To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.
METHODS:
RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.
RESULTS:
The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.
CONCLUSION
EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.
Animals
;
Mice
;
Antioxidants/pharmacology*
;
Lipopolysaccharides/pharmacology*
;
Polygala
;
Transcription Factor RelA/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/metabolism*
;
Anti-Inflammatory Agents/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Nitrites/metabolism*
;
NF-kappa B/metabolism*
;
Nitric Oxide/metabolism*
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger
;
Nitric Oxide Synthase Type II/metabolism*
2.Anti-osteoarthritis components and mechanism of Fufang Duzhong Jiangu Granules.
Zi-Jun CHEN ; Xiao-Qian HUO ; Yue REN ; Zhan SHU ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2022;47(15):4156-4163
Osteoarthritis is a common disease characterized by degenerative lesions of articular cartilage in the elderly.Fufang Duzhong Jiangu Granulues(FDJG), a classical prescription for the treatment of osteoarthritis, has the effects of nourishing liver and kidney, nourishing blood and sinew, and dredging collaterals and relieving pain.In this study, molecular simulation technology was combined with molecular biology methods to explore and verify the potential pharmacodynamic substances and molecular mechanism of FDJG in the treatment of osteoarthritis.Arachidonic acid(AA) metabolic pathway is a typical anti-inflammatory pathway, and secretory phospholipase A2 group ⅡA(sPLA2-ⅡA), 5-lipoxygenase(5-LOX), cyclooxygenase-2(COX-2), and leukotriene A4 hydrolase(LTA4 H) are the key targets of the pathway.Therefore, in this study, based on the pharmacophores and molecular docking models of the four key targets in AA pathway, a total of 1 522 chemical components in 12 medicinals of FDJG were virtually screened, followed by weighted analysis of the screening results in combination with the proportions of the medicinals in the prescription.The results showed that mainly 73 components in the preparation could act on the above four targets, suggesting they might be the potential anti-osteoarthritis components of FDJG.Considering the predicted effectiveness, availability, and compatibility of the medicinals, coniferyl ferulate, olivil, and baicalin were selected for further verification.Specifically, lipopolysaccharide(LPS)-induced RAW264.7 inflammatory cell model was used to verify the anti-inflammatory activity of the three components.The results showed that the three can effectively inhibit the release of NO, supporting the above selection.In addition, targets 5-LOX, COX-2, and LTA4 H had high activity, which suggested that they may be the key anti-osteoarthritis targets of FDJG.The comprehensive activity values of Eucommiae Cortex, Achyranthis Bidentatae Radix, Ginseng Radix et Rhizoma, Lycii Fructus, and Astragali Radix were much higher than that of other medicinals in the prescription, indicating that they may be the main effective medicinals in FDJG acting on the AA pathway.In this study, the potential anti-osteoarthritis components of FDJG were obtained.Moreover, it was clarified that the anti-osteoarthritis mechanism of FDJG was to act on LOX and COX pathway in AA metabolic pathway, which provided a reference for the study of pharmacodynamic substances and molecular mechanism of FDJG.
Aged
;
Anti-Inflammatory Agents/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Leukotriene A4/analysis*
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Osteoarthritis/drug therapy*
;
Rhizome/chemistry*
3.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
Carthamus tinctorius/chemistry*
;
Chalcone/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Cytokines/metabolism*
;
Flavonoids/therapeutic use*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Humans
;
Ischemic Stroke/drug therapy*
;
Janus Kinase 2/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prostaglandin D2
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quinones/pharmacology*
4.Therapeutic effects of alkaloids in Tibetan medicine Bangna (Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis rats and mechanisms.
Qi WANG ; Jing PENG ; Yang LIU ; Yang TIAN ; Jie LI ; Yao-Yao REN ; Jian GU ; Rui TAN
China Journal of Chinese Materia Medica 2022;47(17):4715-4722
This study aims to investigate the therapeutic effects of alkaloids in Tibetan medicine Bangna(Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis(OA) rats in vitro and in vivo and the underlying mechanisms. Chondrocytes were isolated from 2-3 week-old male SD rats and lipopolysaccharide(LPS) was used to induce OA in chondrocytes in vitro. Methyl thiazolyl tetrazolium(MTT) assay was used to investigate the toxicity of seven alkaloids(12-epi-napelline, songorine, benzoylaconine, aconitine, 3-acetylaconitine, mesaconitine, and benzoylmesaconine) to chondrocytes. Chondrocytes were classified into the control group, model group(induced by LPS 5 μg·mL~(-1) for 12 h), and administration groups(induced by LPS 5 μg·mL~(-1) for 12 h and incubated for 24 h). The protein expression of inflammatory factors cyclooxygenase-2(COX-2), inducible nitric oxide synthetase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in each group were detected by Western blot, and the protein expression of matrix metalloprotease-13(MMP-13), aggrecan, collagen Ⅱ, fibroblast growth factor 2(FGF2) by immunofluorescence staining. For the in vivo experiment, sodium iodoacetate was used to induce OA in rats, and the expression of MMP-13, TNF-α, and FGF2 in cartilage tissues of rats in each group was detected by immunohistochemistry. The results showed that the viability of chondrocytes could reach more than 90% under the treatment of the seven alkaloids in a certain dose range. Aconitine, 12-epi-napelline, songorine, 3-acetylaconitine, and mesaconitine could decrease the protein expression of inflammatory factors COX-2, iNOS, TNF-α and IL-1β compared with the model group. Moreover, 12-epi-napelline, aconitine, and mesaconitine could down-regulate the expression of MMP-13 and up-regulate the expression of aggrecan and collagen Ⅱ. In addition, compared with the model group and other Bangna alkaloids, 12-epi-napelline significantly up-regulated the expression of FGF2. Therefore, 12-epi-napelline was selected for the animal experiment in vivo. Immunohistochemistry results showed that 12-epi-napelline could significantly reduce the expression of MMP-13 and TNF-α in cartilage tissues, and up-regulate the expression of FGF2 compared with the model group. In conclusion, among the seven Bangna alkaloids, 12-epi-napelline can promote the repair of OA in rats by down-regulating the expression of MMP-13 and TNF-α and up-regulating the expression of FGF2.
Aconitine/therapeutic use*
;
Aconitum/chemistry*
;
Aggrecans/metabolism*
;
Alkaloids/therapeutic use*
;
Animals
;
Cells, Cultured
;
Cyclooxygenase 2/metabolism*
;
Fibroblast Growth Factor 2/therapeutic use*
;
Interleukin-1beta/metabolism*
;
Iodoacetic Acid/therapeutic use*
;
Lipopolysaccharides
;
Male
;
Matrix Metalloproteinase 13/metabolism*
;
Medicine, Tibetan Traditional
;
NF-kappa B/metabolism*
;
Osteoarthritis/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
5.Synthesis, and anti-inflammatory activities of gentiopicroside derivatives.
Qi-Li ZHANG ; Peng-Fei XIA ; Xue-Jing PENG ; Xiao-Yu WU ; Hua JIN ; Jian ZHANG ; Lei ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):309-320
A series of 26 novel derivatives have been synthesized through structural modification of gentiopicroside, a lead COX-2 inhibitor. And their in vivo and in vitro anti-inflammatory activities have been investigated. The in vitro anti-inflammatory activities were evaluated against NO, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by LPS. Results showed that most compounds had good inhibitory activity. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Results demonstrated that several compounds were more active than the parent compound gentiopicroside. The inhibition rate of the most active compound P23 (57.26%) was higher than positive control drug celecoxib (46.05%) at dose 0.28 mmol·kg-1. Molecular docking suggested that these compounds might bind to COX-2 and iNOS. Some of them, e.g P7, P14, P16, P21, P23, and P24, had high docking scores in accordance with their potency of the anti-inflammatory activitiy, that downregulation of the inflammatory factors, NO, PGE2, and IL-6, was possibly associated with the suppression of iNOS and COX-2. Therefore, these gentiopicroside derivatives may represent a novel class of COX-2 and iNOS inhibitors.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Cyclooxygenase 2/chemistry*
;
Dinoprostone
;
Interleukin-6/metabolism*
;
Iridoid Glucosides
;
Mice
;
Molecular Docking Simulation
;
Pyridinolcarbamate
6.Effects of different extracts of Dendrobium officinale on rats with chronic pharyngitis induced by pepper water combined with ammonia.
Wen-Na JI ; Mei-Qiu YAN ; Jie SU ; Jing-Jing YU ; Su-Hong CHEN ; Gui-Yuan LYU ; Jian-Zhen CHEN
China Journal of Chinese Materia Medica 2022;47(9):2525-2532
Dendrobium officinale can serve as Chinese medicinal material effective in nourishing yin, clearing heat, and producing fluid, and is used to treat throat diseases, but its active substances and mechanism are not clear. To clarify the active fraction and underlying mechanism of D. officinale against chronic pharyngitis(CP), the present study induced a CP model in rats by pepper water combined with low-concentration ammonia, and crude polysaccharides of D. officinale(DOP), non-polysaccharides of D. officinale(DON), and total extract of D. officinale(DOT)(0.33 g·kg~(-1), calculated according to the crude drug) were administered by gavage for six weeks. The changes in oral secretions and pharyngeal conditions of rats with CP were observed and rated. The hematological indicators were determined by an automatic hematology analyzer. The serum levels of pro-inflammatory factors, such as tumor necrosis factor-alpha(TNF-α), interleukin 1β(IL-1β), and interleukin 6(IL-6), and T-lymphocyte cytokines, including interferon γ(IFN-γ), interleukin 4(IL-4), interleukin 17(IL-17), and transforming growth factor β1(TGF-β1) were detected by the enzyme-linked immunosorbent assay(ELISA). The proportions of CD3~+, CD4~+, and CD8~+cells in peripheral blood T lymphocyte subsets were determined by the flow cytometry. The histomorphological changes of the pharynx were observed by hematoxylin-eosin(HE) staining. The protein expression of nuclear factor-κB P65(NF-κB P65), cyclooxygenase-2(COX-2), F4/80, and monocyte chemoattractant protein-1(MCP-1) in the pharynx were detected by immunohistochemistry and Western blot. The results showed that DOP and DON could significantly relieve pharyngeal lesions, reduce white blood cells(WBC) and lymphocytes(LYMP), decrease the levels of pro-inflammatory factors TNF-α, IL-6, and IL-1β, and inhibit the protein expression of NF-κB P65, COX-2, F4/80, and MCP-1 in the pharynx. DOP was superior in reducing oral secretions and serum IL-17 level and inferior in increasing CD4~+/CD8~+ratio to DON. It is suggested that both polysaccharides and non-polysaccharides of D. officinale have anti-PC effects and the anti-inflammatory mechanism may be related to the regulation of T lymphocyte distribution and inhibition of the inflammatory signaling pathways mediated by NF-κB P65. The anti-inflammatory effect of DOP may be related to the regulation of Th17/Treg balance, while that of DON may be related to the regulation of the Th/Tc ratio.
Ammonia/therapeutic use*
;
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Cyclooxygenase 2
;
Dendrobium/chemistry*
;
Interleukin-17/therapeutic use*
;
Interleukin-6
;
NF-kappa B/metabolism*
;
Pharyngitis/drug therapy*
;
Plant Extracts/chemistry*
;
Polysaccharides/pharmacology*
;
Rats
;
Tumor Necrosis Factor-alpha
;
Water
7.Effects of apple polyphenols on monocrotaline-induced pulmonary vascular remodeling in rats and its mechanism.
Shu-Hao ZHANG ; Si-Ming SHAO ; Fang-Zheng CHEN ; Jing ZHU ; Luo-Wei CHEN ; Heng WANG ; Xin-Hui XIANG ; Lin-Bo YUAN
Chinese Journal of Applied Physiology 2019;35(3):209-214
OBJECTIVE:
To investigate the effects of apple polyphenols on pulmonary vascular remodeling in rats with pulmonary arterial hypertension and its mechanism.
METHODS:
Rats were randomly divided into 4 groups:control (Con) group, monocrotaline (MCT) group, apple polyphenol (APP) group,monocrotaline + apple polyphenol (MCT+APP) group. In Con group, rats received a subcutaneous injection of physical saline. In APP group, rats received intraperitoneal injection of 20 mg/kg APP, every other day. In MCT group, rats received a single subcutaneous injection of MCT(60 mg/kg). In MCT+APP group, rats received subcutaneous injection of 60 mg/kg MCT followed by an intraperitoneal injection of 20 mg/kg APP every other day. All the disposal lasted 3 weeks. Then the PAH-relevant indicators, such as mean pulmonary artery pressure(mPAP), pulmonary vascular resistance(PVR), right ventricular hypertrophy index (RVHI) ,wall thickness (WT%) and wall area (WA%) were tested. After that, the inflammatory pathway related indicators, such as interleukin1(IL-1),interleukin1(IL-6), tumor necrosis factor α(TNF-α), cyclooxygenase 2(COX-2) and myeloperoxidase(MPO) in pulmonary tissue and free intracellular Ca in pulmonary smooth muscle cell(PASMC), content of eNOS and NO in endothelial cells were determined.
RESULTS:
Compared with the control group, the levels of mPAP, PVR, RVHI, WA%, WT%, and IL-1, IL-6, TNF-α, COX-2, MPO in tissue and the expression of Ca in PASMC of MCT group were increased significantly, while the contents of eNOS and NO in endothelial cells were decreased significantly (P<0.05). Compared with the MCT group, the apple polyphenol treatment could improve the above mentioned situation, and the COX-2 and Ca indicators of the apple polyphenol treatment group were decreased significantly (P<0.05).
CONCLUSION
MCT can increase COX-2 expression and intracellular Ca in pulmonary artery smooth muscle cells, decrease the contents of eNOS and NO in endothelial cells, while apple polyphenols can significantly inhibit these effects.
Animals
;
Calcium
;
metabolism
;
Cyclooxygenase 2
;
metabolism
;
Cytokines
;
metabolism
;
Malus
;
chemistry
;
Monocrotaline
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Polyphenols
;
pharmacology
;
Pulmonary Artery
;
drug effects
;
pathology
;
Random Allocation
;
Rats
;
Vascular Remodeling
;
drug effects
8.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
9.Ferroptosis was involved in the oleic acid-induced acute lung injury in mice.
Hang ZHOU ; Feng LI ; Jian-Yi NIU ; Wei-Yong ZHONG ; Min-Yu TANG ; Dong LIN ; Hong-Hui CUI ; Xue-Han HUANG ; Ying-Ying CHEN ; Hong-Yan WANG ; Yong-Sheng TU
Acta Physiologica Sinica 2019;71(5):689-697
The aim of the present study was to investigate the role of ferroptosis in acute lung injury (ALI) mouse model induced by oleic acid (OA). ALI was induced in the mice via the lateral tail vein injection of pure OA. The histopathological score of lung, lung wet-dry weight ratio and the protein content of bronchoalveolar lavage fluid (BALF) were used as the evaluation indexes of ALI. Iron concentration, glutathione (GSH) and malondialdehyde (MDA) contents in the lung tissues were measured using corresponding assay kits. The ultrastructure of pulmonary cells was observed by transmission electron microscope (TEM), and the expression level of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA was detected by quantitative polymerase chain reaction (q-PCR). Protein expression levels of glutathione peroxidase 4 (GPX4), ferritin and transferrin receptor 1 (TfR1) in lung tissues were determined by Western blot. The results showed that histopathological scores of lung tissues, lung wet-dry weight ratio and protein in BALF in the OA group were higher than those of the control group. In the OA group, the mitochondria of pulmonary cells were shrunken, and the mitochondrial membrane was ruptured. The expression level of PTGS2 mRNA in the OA group was seven folds over that in the control group. Iron overload, GSH depletion and accumulation of MDA were observed in the OA group. Compared with the control group, the protein expression levels of GPX4 and ferritin in lung tissue were down-regulated in the OA group. These results suggest that ferroptosis plays a potential role in the pathogenesis of ALI in our mouse model, which may provide new insights for development of new drugs for ALI.
Acute Lung Injury
;
chemically induced
;
pathology
;
Animals
;
Apoptosis
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Cyclooxygenase 2
;
metabolism
;
Ferritins
;
metabolism
;
Glutathione
;
analysis
;
Glutathione Peroxidase
;
metabolism
;
Iron
;
analysis
;
Iron Overload
;
physiopathology
;
Lung
;
cytology
;
pathology
;
Malondialdehyde
;
analysis
;
Mice
;
Microscopy, Electron, Transmission
;
Mitochondrial Membranes
;
ultrastructure
;
Oleic Acid
10.Pharmacological evaluation of Mongolian medicine Syringa pinnatifolia fraction I against acute myocardial ischemia in mice.
Jun-Jun LI ; Fu-Xing GE ; Shun-Gang JIAO ; Sha-Na WUKEN ; Su-Yi-le CHEN ; Peng-Fei TU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2019;44(23):5240-5247
Syringa pinnatifolia Hemsl.( SP) is a representative Mongolian folk medicine with the effects of inhibiting Heyi related diseases,clearing heat and relieving pain. It has been used for the treatment of Heyi-induced heart tingling,heart palpitations,upset,insomnia and other symptoms. Total ethanol extract( T) and major fraction( M) of SP have been evaluated its anti-ischemic effects,and the mechanism was related to the regulation of cyclooxygenase( COX)-mediated inflammatory pathway and p53-mediated apoptosis pathway in our previous studies. This study reports the chemical fractionation on M by which to obtain subfractions( I and M_3),and the pharmacological evaluation of M,I,and M_3 against myocardial ischemia in mice. The result showed that I and M reduced the values of LVEDd and LVEDs,significantly increased EF and FS values,increased serum CK-MB and LDH levels in mice,and reduced in inflammatory cells infiltration and collagen deposition in the infarcted myocardial tissue,suggesting that M and I possess the same degree anti-myocardial is chemia equally whereas M_3 has no this effect. Related mechanism studies suggested that I can reduce the expression of COX-1,COX-2 and p53 protein in myocardial tissue in a dose-dependent manner. This study lays the foundation for further chemical segmentation and clarification of pharmacological substance groups,paving the way for the full use and benefits to be use of systematic biological methods to analyze the pharmacological basis of SP against myocardial ischemia.
Animals
;
Cyclooxygenase 1/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Heart/drug effects*
;
Medicine, Mongolian Traditional
;
Membrane Proteins/metabolism*
;
Mice
;
Myocardial Ischemia/drug therapy*
;
Myocardium/metabolism*
;
Plant Extracts/therapeutic use*
;
Syringa/chemistry*
;
Tumor Suppressor Protein p53/metabolism*

Result Analysis
Print
Save
E-mail