1.Tyro3 and CDK9 as biomarkers for drug resistance to breast cancer anti-PD-1 therapies.
Chinese Journal of Oncology 2023;45(8):651-656
Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.
Humans
;
Animals
;
Mice
;
c-Mer Tyrosine Kinase/metabolism*
;
Receptor Protein-Tyrosine Kinases/genetics*
;
Axl Receptor Tyrosine Kinase
;
Proto-Oncogene Proteins/metabolism*
;
B7-H1 Antigen/genetics*
;
Triple Negative Breast Neoplasms/genetics*
;
Drug Resistance, Neoplasm
;
Biomarkers
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase 9
2.Tyro3 and CDK9 as biomarkers for drug resistance to breast cancer anti-PD-1 therapies.
Chinese Journal of Oncology 2023;45(8):651-656
Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.
Humans
;
Animals
;
Mice
;
c-Mer Tyrosine Kinase/metabolism*
;
Receptor Protein-Tyrosine Kinases/genetics*
;
Axl Receptor Tyrosine Kinase
;
Proto-Oncogene Proteins/metabolism*
;
B7-H1 Antigen/genetics*
;
Triple Negative Breast Neoplasms/genetics*
;
Drug Resistance, Neoplasm
;
Biomarkers
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase 9
3.Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.
Tao WANG ; Zi-ping XIE ; Zhan-sen HUANG ; Hao LI ; An-yang WEI ; Jin-ming DI ; Heng-jun XIAO ; Zhi-gang ZHANG ; Liu-hong CAI ; Xin TAO ; Tao QI ; Di-ling CHEN ; Jun CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):736-741
In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.
Antineoplastic Agents, Phytogenic
;
isolation & purification
;
pharmacology
;
Apoptosis
;
drug effects
;
Caspase 3
;
genetics
;
metabolism
;
Caspase 9
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Cyclin D1
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
E2F1 Transcription Factor
;
genetics
;
metabolism
;
G1 Phase Cell Cycle Checkpoints
;
drug effects
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
Nucleosomes
;
drug effects
;
metabolism
;
pathology
;
Plant Extracts
;
chemistry
;
Prostate
;
drug effects
;
metabolism
;
pathology
;
Reishi
;
chemistry
;
Signal Transduction
;
Triterpenes
;
isolation & purification
;
pharmacology
4.Effects of small interfering RNA silencing MACC-1 expression on cell proliferation, cell cycle and invasion ability of cervical cancer SiHa cells.
Fangfang HUA ; Yonghua XIA ; Huiling WANG ; Ruixiang CHEN ; Yanfang REN ; Jun YANG ; Wufeng LIANG
Chinese Journal of Oncology 2014;36(7):496-500
OBJECTIVETo investigate the expression of metastasis-associated in colon cancer-1 (MACC-1) mediated by siRNA, and to study the effects of its downregulation on cell proliferation, cell cycle and invasion ability of cervical cancer SiHa cells.
METHODSMACC-1 siRNA and control siRNA were transfected into cervical cancer SiHa cells, and the expression of MACC-1 protein after transfection with MACC-1 siRNA was detected by Western blotting. The changes of cell proliferation, cell cycle and invasion ability of the SiHa cells were determined by CCK-8 kit, flow cytometry and Boyden chamber assay. The expressions of cell cycle- and invasion-related proteins were analyzed by Western blotting.
RESULTSCompared with the untreated group (0.317 ± 0.023) and control siRNA group (0.309 ± 0.021), the expression of MACC-1 protein was downregulated in the MACC1 siRNA group (0.041 ± 0.006) (P < 0.05), and its downregulation significantly suppressed the cell proliferation, altered the cell cycle distribution and reduced the cell invasion ability of the SiHa cells (P < 0.05). Compared with the untreated group (0.217 ± 0.025 and 0.215 ± 0.024) and the control siRNA group (0.222 ± 0.023 and 0.207 ± 0.027), the expression of cyclin D1 and Cdk2 proteins were significantly decreased in the MACC1 siRNA group (0.076 ± 0.010 and 0.039 ± 0.007) (P < 0.05). Compared with the untreated group (0.099 ± 0.007) and control siRNA group (0.105 ± 0.012), the expression of p21 protein was significantly increased in the MACC1 siRNA group (0.676 ± 0.044) (P < 0.05). The downregulation of MACC-1 expression also evoked a decrease of expressions of MMP-2 and MMP-9 proteins and an increase of E-cadherin protein expression (P < 0.05).
CONCLUSIONSMACC-1 downregulation-mediated inhibition of proliferation and decreased invasion ability of tumor cells may be closely associated with the alterations of expressions of cell cycle- and invasion-related proteins.
Cadherins ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; drug effects ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 2 ; metabolism ; Down-Regulation ; Female ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Humans ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; RNA, Small Interfering ; Transcription Factors ; metabolism ; Transfection ; Uterine Cervical Neoplasms ; metabolism
5.Effect of downregulation of Tiam1 by siRNA on esophageal squamous cell carcinoma EC9706 cells.
Huaimin LIU ; Lifeng JIANG ; Xiaoli LIU ;
Chinese Journal of Oncology 2014;36(4):250-256
OBJECTIVETo explore the effect of downregulation of Tiam1 by siRNA on the esophageal squamous cell carcinoma (ESCC) EC9706 cells, and provide theoretical basis for gene therapy of ESCC using Tiam1 as a molecular target.
METHODSTiam1 siRNA was transfected into EC9706 cells, and expression changes of Tiam1 mRNA and protein after transfection were detected by quantitative real-time PCR and Western blotting. Cell proliferation was analyzed using CCK-8 kit. Cell cycle and apoptosis of the EC9706 cells were assessed by flow cytometry. Cell cycle-related proteins and cell apoptosis-associated proteins were analyzed by Western blotting.
RESULTSCompared with the untreated group and control siRNA group, the relative expression levels of Tiam1 mRNA (1.00 and 0.11 ± 0.02) were not significantly different (P > 0.05). The relative expression levels of Tiam1 mRNA in the Tiam1 siRNA group at 24, 48 and 72 h after transfection were 0.30 ± 0.04, 0.09 ± 0.01 and 0.09 ± 0.006, respectively, significantly lower than that of the untreated group (P < 0.05 for all). The expression level of Tiam1 protein at 24 h after Tiam1 siRNA transfection in the EC9706 cells was 0.11 ± 0.02, significantly lower than that in the un-treated group (0.44 ± 0.05) and control siRNA group (0.44 ± 0.04, P < 0.05 for all). The percentages of G0/G1 cells in the Tiam1 siRNA group, untreated group and control siRNA group were (54.48 ± 2.14)%, (40.69 ± 1.85)% and (41.78 ± 1.31)%, respectively (P < 0.01). The percentages of S phase cells in the Tiam1 siRNA group, untreated group and control siRNA group were (27.18 ± 1.65)%, (32.32 ± 1.15)% and (30.35 ± 1.09)%, respectively (P < 0.01). The expression levels of cyclin D1 protein in the untreated group, control siRNA group and Tiam1 siRNA group were 0.43 ± 0.02, 0.41 ± 0.01 and 0.11 ± 0.02, respectively (P < 0.05). The expression levels of p27 protein in the untreated group, control siRNA group and Tiam1 siRNA group were 0.10 ± 0.01, 0.09 ± 0.02 and 0.20 ± 0.02, respectively (P < 0.05). The ratios of early apoptotic cells in the untreated group, control siRNA group and Tiam1 siRNA group were (10 ± 0.9)%, (10 ± 0.5)% and (27 ± 0.7)%, respectively (P < 0.01). The expression levels of Mcl-1 protein in EC9706 cells of untreated group, control siRNA group and Tiam1 siRNA group were 0.47 ± 0.12, 0.48 ± 0.13 and 0.16 ± 0.02, respectively (P < 0.05). The expression levels of Bcl-2 protein in EC9706 cells of the untreated group, control siRNA group and Tiam1 siRNA group were 0.49 ± 0.08, 0.50 ± 0.05 and 0.04 ± 0.03, respectively (P < 0.05). The caspase-3 activities in the untreated group, control siRNA group and Tiam1 siRNA group were 2.3 ± 0.09, 2.3 ± 0.10 and 16.0 ± 1.50, respectively; and that of caspase-9 were 2.3 ± 0.08, 2.3 ± 0.11 and 14.5 ± 0.9, respectively (P < 0.05 for all).
CONCLUSIONSTiam1 siRNA can significantly inhibit the proliferation of esophageal cancer EC9706 cells, induce cell cycle arrest and cell apoptosis. These effects are related to the regulation of the expressions of cell cycle-related genes (cyclin D1 and p27) and cell apoptosis-related genes (Mcl-1, Bcl-1, caspase-3 and caspase-9) by Tiam1 siRNA.
Apoptosis ; Carcinoma, Squamous Cell ; genetics ; metabolism ; pathology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Cycle Checkpoints ; Cell Line, Tumor ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p27 ; metabolism ; Down-Regulation ; Esophageal Neoplasms ; genetics ; metabolism ; pathology ; Guanine Nucleotide Exchange Factors ; genetics ; metabolism ; Humans ; Myeloid Cell Leukemia Sequence 1 Protein ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA Interference ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; genetics ; T-Lymphoma Invasion and Metastasis-inducing Protein 1 ; Transfection
6.Inhibitions of SphK1 inhibitor SKI II on cell cycle progression and cell invasion of hepatoma HepG2 cells.
Cai-Xia ZHANG ; Hong LIU ; Yu-Yan GONG ; Hong-Wei HE ; Rong-Guang SHAO
Acta Pharmaceutica Sinica 2014;49(2):204-208
Sphingosine kinase 1 (SphK1) plays critical roles in cell biological functions. Here we investigated the effects of SphK1 inhibitor SKI II on hepatoma HepG2 cell cycle progression and invasion. Cell survival was determined by SRB assay, cell cycle progression was assayed by flow cytometry, the ability of cell invasion was measured by Matrigel-Transwell assay and protein expression was detected by Western blotting. The results showed that SKI II markedly inhibited HepG2 cell survival in a dose-dependent manner, induced G1 phase arrest in HepG2 cell and inhibited cell invasion. SKI II markedly decreased the expressions of G1-phase-related proteins CDK2, CDK4 and Cdc2 and the levels of cell invasion-associated proteins MMP2 and MMP9. The results showed that SKI II inhibited cell cycle progression and cell invasion, implying SphK1 as a potential target for hepatoma treatment.
CDC2 Protein Kinase
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Cyclin-Dependent Kinase 2
;
metabolism
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Cyclin-Dependent Kinases
;
metabolism
;
G1 Phase
;
drug effects
;
Hep G2 Cells
;
Humans
;
Matrix Metalloproteinase 2
;
metabolism
;
Matrix Metalloproteinase 9
;
metabolism
;
Phosphotransferases (Alcohol Group Acceptor)
;
antagonists & inhibitors
;
Thiazoles
;
pharmacology
7.Mechanism of HL-60 cells apoptosis induced by proteasome inhibitor MG132.
Yong-Ming ZHOU ; Mei-Xia YU ; Yu-Zhen QIU ; Xiao-Lei XING ; Chun-Hong YAO ; Ru-Jun BAI
Journal of Experimental Hematology 2013;21(4):911-915
The purpose of this study was to elucidate the apoptosis, apoptotic pathway of HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Apoptosis of HL-60 cells was detected by flow cytometry, the expression of P21, P27 and P53 proteins in HL-60 cells treated with MG132 was assayed by Western blot. The HL-60 cells were treated with 1 µmol/L MG132 for 48 h, and irradiated by 75 Gy of (60)Co γ-ray, but their antigenicity was preserved. The effect of irradiated HL-60 cells treated with MG132 on proliferation of peripheral blood mononuclear cells (PBMNC) was measured by CCK-8 method. The results showed that the apoptotic rate of MG132-treated HL-60 cells increased in dose-and time-dependent manner. No significant changes in MG132-induced apoptosis were observed after inhibiting caspase-8 and caspase-9 pathway. The expression of P21 and P27 protein increased after treatment of HL-60 cells with MG132. CCK-8 test showed that HL-60 cells induced with low-dose of MG132 displayed the enhancing effect on proliferation of PBMNC. It is concluded that high dose of MG132 can induce the apoptosis of HL-60 cells, and has direct killing effect on HL-60 cells, but this inducing apoptotic effect on HL-60 cells can not be realized through caspase-8 and caspase-9 pathway. The P21 and P27 protein may be involved in MG132 induced HL-60 cell apoptosis. Low dose of MG132 promotes the proliferation of PBMNC in healthy individuals and enhance the immunity of organism.
Apoptosis
;
drug effects
;
Caspase 8
;
metabolism
;
Caspase 9
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p27
;
metabolism
;
HL-60 Cells
;
Humans
;
Leupeptins
;
pharmacology
;
Proteasome Inhibitors
;
pharmacology
8.Growth Inhibition of Hepatocellular Carcinoma Huh7 Cells by Lactobacillus casei Extract.
Dae Jong HAN ; Jong Bin KIM ; Seo Young PARK ; Man Gil YANG ; Hyuncheol KIM
Yonsei Medical Journal 2013;54(5):1186-1193
PURPOSE: Lactobacillus casei (L. casei) is known to exert anti-proliferation effects on many types of cancer cells. However, the effect of L. casei on liver cancer has not been reported. Accordingly, the aim of this study was to determine the anti-cancer effect of L. casei extract on Huh7 cells. MATERIALS AND METHODS: L. casei ATCC393 extract was prepared and purified. After the treatment of L. casei extract on Huh7 cells, cell viability, cell cycle arrest and cell death were analyzed by flow cytometry. The expression levels of tumor necrosis factor-alpha receptor 1 (TNFR1) and death receptor 3 (DR3) mRNA related with extrinsic apoptosis were assessed by reverse transcription polymerase chain reaction. Additionally, P21 and P27 cell cycle proteins as well as Caspase-3, -8, -9, phospho-Bad and Bcl-2 apoptosis proteins were analyzed by western blot analysis. To determine the effect of L. casei extract on cancer stem-like cells, we analyzed changes in side population fraction through flow cytometry. RESULTS: The cell viability of Huh7 cells treated with L. casei extract was decreased by 77%, potentially owing to increases in the rates of Huh7 cells arrested in the G2/M phase (3% increase) and that underwent apoptosis (6% increase). The expression levels of TNFR1 and DR3 mRNA, as well as P21 and P27 cell cycle proteins, were increased. Meanwhile, the expressions of caspase-8, -9, phospho-Bad and Bcl-2 proteins decreased. However, in the case of side population cells, no remarkable changes were observed. CONCLUSION: L. casei extract exerts a potent anti-tumor effect on the viability of liver cancer cells, although not on cancer stem-like cells.
Apoptosis/drug effects
;
Carcinoma, Hepatocellular/*pathology
;
Caspase 8/metabolism
;
Caspase 9/metabolism
;
Cell Cycle Checkpoints/drug effects
;
Cell Extracts/*pharmacology
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism
;
Cyclin-Dependent Kinase Inhibitor p27/metabolism
;
Cytostatic Agents/*pharmacology
;
Flow Cytometry
;
Gene Expression Regulation, Neoplastic/drug effects
;
Humans
;
Lactobacillus casei/*chemistry
;
Liver Neoplasms/*pathology
;
Proto-Oncogene Proteins c-bcl-2/metabolism
;
RNA, Messenger/metabolism
;
Receptors, Tumor Necrosis Factor, Member 25/metabolism
;
Receptors, Tumor Necrosis Factor, Type I/metabolism
;
bcl-Associated Death Protein/metabolism
9.Effects of downregulation of HDAC6 expression on cell cycle, proliferation and migration of laryngeal squamous cell carcinoma.
Lin-lin YUAN ; Feng WANG ; Sheng-lei LI ; Wei-hua LOU ; Liu-xing WANG
Chinese Journal of Oncology 2012;34(6):430-435
OBJECTIVETo detect the expression of histone deacetylase 6 (HDAC6) in laryngeal squamous cell carcinoma, and to analyze the effects of downregulation of HDAC6 expression on cell cycle, proliferation and migration of laryngeal squamous cell carcinoma cell line Hep-2 cells, and to explore their possible molecular mechanisms.
METHODSImmunohistochemistry was used to detect the expression of HDAC6 protein in 55 cases of laryngeal squamous cell carcinoma and 20 cases of normal laryngeal mucosa. HDAC6 siRNA and control siRNA were transfected into Hep-2 cells via lipofectamine 2000, and the interfering effect was analyzed using Western blotting. The effects of downregulation of HDAC6 expression on cell cycle, proliferation and migration were determined by cell counting kit-8 (CCK-8), flow cytometry and Boyden chamber, respectively. Finally, Western blotting was used to detect the expressions of cell cycle, proliferation and migration related proteins.
RESULTSThere was a high level expression of HDAC6 protein in laryngeal squamous cell carcinoma, and its expression was not related to age and sex of the patients (P > 0.05), but closely associated with the degree of histological differentiation, TNM staging and lymph node metastasis (P < 0.05). HDAC6 siRNA effectively down-regulated the expression of HDAC6 protein in laryngeal squamous cell carcinoma cell line Hep-2 cells, and downregulation of its expression obviously inhibited cell proliferation, arrested cell cycle at G(0)/G(1) phase and decreased cell migration ability in Hep-2 cells. Additionally, the downregulation of HDAC6 protein expression markedly decreased the expressions of cyclin D1, cyclin E, cdk2 and MMP-9 proteins, but increased the expressions of p21 and E-cadherin proteins.
CONCLUSIONSHDAC6 may play a pivotal role in the carcinogenesis and development of laryngeal squamous cell carcinoma. The downregulation of HDAC6 expression-mediated cell proliferation inhibition, cell cycle arrest and decreased cell migration ability may be closely associated with the decrease of cyclin D1, cyclin E, cdk2 and MMP-9 proteins and increase of p21 and E-cadherin proteins.
Adult ; Aged ; Cadherins ; metabolism ; Carcinoma, Squamous Cell ; genetics ; metabolism ; pathology ; Cell Cycle ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin E ; metabolism ; Cyclin-Dependent Kinase 2 ; metabolism ; Down-Regulation ; Female ; Histone Deacetylase 6 ; Histone Deacetylases ; genetics ; metabolism ; Humans ; Laryngeal Neoplasms ; genetics ; metabolism ; pathology ; Lymphatic Metastasis ; Male ; Matrix Metalloproteinase 9 ; metabolism ; Middle Aged ; Neoplasm Staging ; Oncogene Proteins ; metabolism ; Proto-Oncogene Proteins p21(ras) ; metabolism ; RNA, Small Interfering ; genetics ; Transfection
10.Effect of Notch1 on cell cycle, apoptosis and migration of laryngeal squamous cell carninoma cell line Hep-2.
Chinese Journal of Oncology 2012;34(2):104-109
OBJECTIVETo investigate the effect of Notch1 on cell cycle, apoptosis and migration of laryngeal squamous cell carcinoma cell line Hep-2 and explore its possible molecular mechanism.
METHODSHep-2 cells were divided into three groups: untreated group, empty vector group and Notch1 group. The effects of upregulation of Notch1 expression on cell proliferation, cell cycle and apoptosis were assessed by CCK-8 staining and flow cytometry, respectively, and effect of upregulation of Notch1 expression on cell migration of Hep-2 cells was studied using Boyden chamber assay, and further expression changes of genes related to cell proliferation, cell cycle, apoptosis and migration were detected by semi-quantitative RT-PCR and Western blotting.
RESULTSCompared with the untreated group and empty vector group, cell proliferation of Hep-2 in the Notch1 group was significantly inhibited (P < 0.05). The results of flow cytometry revealed that the percentage of cells at G0/G1 phase in the Notch1 group was (70.43 +/- 1.36)%, significantly higher than the (46.39 +/- 1.19)% in the untreated group or (48.41 +/- 1.18)% in the empty vector group, and there was a significant difference among the three groups (P = 0.000). In addition, the percentage of apoptotic cells in the Notch1 group was (22.46 +/- 0.90)%, significantly higher than that in the untreated group [(5.77 +/- 0.37)%] or empty vector group [(6.09 +/- 0.20)%], with a significant difference among the three groups (P = 0.000). The results of Boyden chamber assay demonstrated that the number of cells migrated through membrane in the Notch1 group was evidently lower than that in the untreated group and empty vector group. Moreover, the results of semi-quantitative RT-PCR and Western blotting showed that cell proliferation inhibition and cell cycle arrest were closely associated with downregulation of cyclin D1, cyclin E and CDK2 expressions and upregulation of p53 expression. In addition, upregulation of Notch1 expression mediated cell apoptosis was tightly related to upregulation of caspase 3/9 expressions and downregulation of Bcl-2, while the decrease of Hep-2 cell migration ability was obviously correlated with downregulation of MMP-2/-9 expressions.
CONCLUSIONSNotch1 signaling pathway may play a pivotal role in the occurrence and development of laryngeal squamous cell carcinoma. Further study may elucidate that Notchl signaling pathway may become a molecular target for therapy of laryngeal squamous cell carcinoma.
Apoptosis ; Carcinoma, Squamous Cell ; metabolism ; pathology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin E ; metabolism ; Cyclin-Dependent Kinase 2 ; metabolism ; Humans ; Laryngeal Neoplasms ; metabolism ; pathology ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Oncogene Proteins ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Receptor, Notch1 ; metabolism ; physiology ; Signal Transduction ; Tumor Suppressor Protein p53 ; metabolism

Result Analysis
Print
Save
E-mail