1.Antitumor activity of lycorine in renal cell carcinoma ACHN cell line and its mechanism.
Yi-Qiang HUANG ; Yi-Ming ZHANG ; Zhong JIN ; Xie-Zhao LI ; Chong-Shan WANG ; Kai XU ; Peng HUANG ; Chun-Xiao LIU
Journal of Southern Medical University 2016;36(6):857-862
OBJECTIVETo investigate the antitumor effect of lycorine on renal cell carcinoma ACHN cells and explore the possible mechanism.
METHODSWe used flow cytometry to examine the effect of lycorine on ACHN cell cycle and apoptosis. The cell proliferation, migration and invasion were assessed with MTS assay, wound healing assay, and Transwell assay, respectively. Colony forming assay was performed, and the mRNA and protein levels of Bax, Bcl-2, survivin, caspase-3, cyclin D1 and CDK4 were measured with qRT-PCR and Western blotting.
RESULTSLycorine obviously inhibited the proliferation of ACHN cells with an IC(50) of 24.34 µmol/L. Lycorine also induced apoptosis of ACHN cells, caused cell cycle arrest at G(0)/G(1) phase, and suppressed the colony forming ability of the cells in a dose-dependent manner. The migration and invasion of ACHN cells were significantly inhibited by 5 µmol/L lycorine. Lycorine up-regulated the mRNA levels of CDK4, Bax, caspase-3 while down-regulated the levels of survivin, Bcl-2 and Cyclin D1; the protein levels of CDK4 and Bax were increased and cyclin D1, Bcl-2 and surviving expressions were decreased, but caspase-3 expression showed no significant changes following the treatment.
CONCLUSIONLycorine has obvious antitumor effect against ACHN cells, suggesting its value as a new therapeutic agent for renal cell carcinoma.
Amaryllidaceae Alkaloids ; pharmacology ; Antineoplastic Agents, Phytogenic ; pharmacology ; Apoptosis ; Carcinoma, Renal Cell ; pathology ; Caspase 3 ; metabolism ; Cell Cycle Checkpoints ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 4 ; metabolism ; Humans ; Inhibitor of Apoptosis Proteins ; metabolism ; Phenanthridines ; pharmacology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; bcl-2-Associated X Protein ; metabolism
2.Inhibition of Combination of Icaritin and Doxorubicin on Human Osteosarcoma MG-63 Cells in vitro.
Si-wen LIN ; Xue-qin LI ; Su-yun LIU ; Jian-ming SHI ; Jun-huai XU ; Long-huo MAO ; Ming YIN
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(6):729-734
OBJECTIVETo explore the inhibition and molecular mechanism of icaritin (ICT) combined doxorubicin (DOX) on human osteosarcoma MG-63 cells in vitro.
METHODSThe control group, ICT groups (10, 20, 40, 80, and 160 µmol/L), DOX groups (1, 2, 4, 8, and 16 µg/mL), and combination groups (20 µmol/ L ICT +1 µg/mL DOX, 20 µmol/L ICT +2 µg/mL DOX, 20 µmol/L ICT +4 µg/mL DOX, 40 µmol/L ICT +1 µg/mL DOX, 40 µmol/L ICT +2 µg/mL DOX, 40 µmol/L ICT +4 µg/mL DOX, 80 µmol/L ICT +1 µg/mL DOX, 80 µmol/L ICT +2 µg/mL DOX, 80 µmol/L ICT +4 µg/mL DOX) were set up. Human osteosarcoma MG-63 cells were respectively cultured and their effects on morphological changes were observed using inverted phase contrast microscope after 24-and 48-h intervention. The cell proliferation inhibition rate of each group was de- termined using CCK-8, and IC50 calculated. The MG-63 apoptosis rate was detected using Annexin V-FITC/ PI double dye flow cytometry. Expression levels of bcl-2, caspase-3, and p21 were detected using RT-PCR.
RESULTSICT and DOX could obviously inhibit the proliferation of MG-63 cell. Along with ICT concentration increasing from 10 µmol/L to 160 µmol/L, the cell proliferation inhibition rate also increased gradually from 9.67% ± 3.62% to 89.18% ± 9.66%. The IC50 was 46.93 µmol/L and 3.87 µg/mL respectively. ICT and DOX could cause either early or late stage apoptosis, down-regulate Bcl-2 gene expression, and up-regulate gene expressions of Caspase-3 and p21 respectively (P < 0.05). Aforesaid changes were more obviously seen in combination groups than in lCT groups and DOX groups (P < 0.05).
CONCLUSIONCT combined DOX had additive or synergistic inhibition effect for the proliferation of osteosarcoma MG-63 cells, which might be related with regulating gene expressions of bcl-2, caspase-3, and p21.
Apoptosis ; Bone Neoplasms ; metabolism ; pathology ; Caspase 3 ; metabolism ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Down-Regulation ; Doxorubicin ; pharmacology ; Drug Synergism ; Flavonoids ; pharmacology ; Humans ; Osteosarcoma ; metabolism ; pathology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism
3.Effects of Leukemia Inhibitory Factor Combined with Basic Fibroblast Growth Factor on Self-maintenance and Self-renewal of Human Umbilical Cord Mesenchymal Stem Cells In Vitro.
Wen-Long HU ; Ping-Ping WU ; Chang-Chang YIN ; Jian-Ming SHI ; Ming YIN
Journal of Experimental Hematology 2016;24(1):184-190
OBJECTIVETo study the effects of LIF combined with bFGF on the proliferation, stemness and senescence of hUC-MSC.
METHODSExperiments were divided into 4 groups: control group, in which the cells were treated with complete medium (α-MEM containing 10% FBS); group LIF, in which the cells were treated with complete medium containing 10 ng/ml LIF; group bFGF, in which the cells were treated with complete medium containing 10 ng/ml bFGF; combination group, in which the cells were treated with complete medium containing 10 ng/ml LIF and 10 ng/ml bFGF. The growth curves of hUC-MSC at passage 4 in different groups were assayed by cell counting kit 8. Cellular morphologic changes were observed under inverted phase contrast microscope; hUC-MSC senescence in different groups was detected by β-galactosidase staining. The expression of PCNA, P16, P21, P53, OCT4 and NANOG genes was detected by RT-PCR.
RESULTSThe cell growth curves of each group were similar to the S-shape; the cell proliferation rate from high to low as follows: that in the combination group > group bFGF > group LIF > control group. Senescence and declining of proliferation were observed at hUC-MSC very early in control group; the cells in group LIF maintained good cellular morphology at early stage, but cell proliferation was slow and late senescence was observed; a few cells in group bFGF presented signs of senescence, but with quick proliferation; the cells in combination group grew quickly and maintained cellular morphology of hUC-MSC for long time. The LIF and bFGF up-regulated the expression of PCNA, OCT4 and NANOG, while they down-regulated the expression of P16, P21, P53, and their combinative effects were more significant.
CONCLUSIONLIF combined with bFGF not only can promote the proliferation and maintenance of stemness of hUC-MSC, but also can delay the senescence of hUC-MSC.
Cell Cycle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Fibroblast Growth Factor 2 ; pharmacology ; Genes, Homeobox ; Humans ; Leukemia Inhibitory Factor ; pharmacology ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Octamer Transcription Factor-3 ; metabolism ; Organic Chemicals ; Proliferating Cell Nuclear Antigen ; metabolism ; Tumor Suppressor Protein p53 ; metabolism ; Umbilical Cord ; cytology
4.MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6.
Kegan ZHU ; Lei LIU ; Junliang ZHANG ; Yanbo WANG ; Hongwei LIANG ; Gentao FAN ; Zhenhuan JIANG ; Chen-Yu ZHANG ; Xi CHEN ; Guangxin ZHOU
Protein & Cell 2016;7(6):434-444
Osteosarcoma is the most common primary sarcoma of bone, and it is a leading cause of cancer death among adolescents and young adults. However, the molecular mechanism underlying osteosarcoma carcinogenesis remains poorly understood. Recently, cyclin-dependent kinase 6 (CDK6) was identified as an important oncogene. We found that CDK6 protein level, rather than CDK6 mRNA level, is much higher in osteosarcoma tissues than in normal adjacent tissues, which indicates a post-transcriptional mechanism involved in CDK6 regulation in osteosarcoma. MiRNAs are small non-coding RNAs that repress gene expression at the post-transcriptional level and have widely been shown to play important roles in many human cancers. In this study, we investigated the role of miR-29b as a novel regulator of CDK6 using bioinformatics methods. We demonstrated that CDK6 can be downregulated by miR-29b via binding to the 3'-UTR region in osteosarcoma cells. Furthermore, we identified an inverse correlation between miR-29b and CDK6 protein levels in osteosarcoma tissues. Finally, we examined the function of miR-29b-driven repression of CDK6 expression in osteosarcoma cells. The results revealed that miR-29b acts as a tumor suppressor of osteosarcoma by targeting CDK6 in the proliferation and migration processes. Taken together, our results highlight an important role for miR-29b in the regulation of CDK6 in osteosarcoma and may open new avenues for future osteosarcoma therapies.
3' Untranslated Regions
;
Animals
;
Base Sequence
;
Bone Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cyclin-Dependent Kinase 6
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Mice
;
MicroRNAs
;
metabolism
;
Osteosarcoma
;
metabolism
;
pathology
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Sequence Alignment
;
Up-Regulation
5.Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.
Tao WANG ; Zi-ping XIE ; Zhan-sen HUANG ; Hao LI ; An-yang WEI ; Jin-ming DI ; Heng-jun XIAO ; Zhi-gang ZHANG ; Liu-hong CAI ; Xin TAO ; Tao QI ; Di-ling CHEN ; Jun CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):736-741
In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.
Antineoplastic Agents, Phytogenic
;
isolation & purification
;
pharmacology
;
Apoptosis
;
drug effects
;
Caspase 3
;
genetics
;
metabolism
;
Caspase 9
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Cyclin D1
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
E2F1 Transcription Factor
;
genetics
;
metabolism
;
G1 Phase Cell Cycle Checkpoints
;
drug effects
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
Nucleosomes
;
drug effects
;
metabolism
;
pathology
;
Plant Extracts
;
chemistry
;
Prostate
;
drug effects
;
metabolism
;
pathology
;
Reishi
;
chemistry
;
Signal Transduction
;
Triterpenes
;
isolation & purification
;
pharmacology
6.Anticancer effect of SN-38 combined with sorafenib on hepatocellular carcinoma in vitro and its mechanism.
Li XU ; Zhu YUAN-RUN ; Chen JIAN ; Yang XIAO-CHUN ; Luo PEI-HUA
Journal of Zhejiang University. Medical sciences 2015;44(5):486-492
OBJECTIVETo investigate the anticancer effect and its mechanism of SN-38 combined with sorafenib on hepatocellular cancer cell lines HepG-2 and BEL-7402.
METHODSSRB colorimetry was employed to measure the viability of HepG-2 and BEL-7402 cells after the treatment of SN-38 with sorafenib. Propidium iodide flow cytometric assay and DAPI staining were used to evaluate the apoptosis of HCC cells. Western blotting was conducted to detect the expression level of apoptosis-related and DNA damage-related proteins.
RESULTSSRB colorimetry showed the synergistic anticancer activities of SN-38 combined with sorafenib, with a combination index of <0.9. The apoptotic rates of HepG-2 cells in control, 60 nmol/L SN-38, 2.5μmol/L sorafenib and combination groups were 4.25%±2.45%, 28.95%±10.75%, 3.49%±2.49% and 53.19%±11.21%, respectively(P<0.05). Western blotting showed that the combination of these two drugs increased the enzymolysis of PARP, Caspase-8 and Caspase-3, and promoted the expression levels of p53, p21 and γ-H2AX significantly.
CONCLUSIONSN-38 and sorafenib have synergistic anticancer activity on hepatocellular carcinoma cells in vitro with the augmentation of apoptosis.
Apoptosis ; Camptothecin ; analogs & derivatives ; pharmacology ; Carcinoma, Hepatocellular ; pathology ; Caspase 3 ; metabolism ; Caspase 8 ; metabolism ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Histones ; metabolism ; Humans ; Liver Neoplasms ; pathology ; Niacinamide ; analogs & derivatives ; pharmacology ; Phenylurea Compounds ; pharmacology ; Poly(ADP-ribose) Polymerases ; metabolism ; Tumor Suppressor Protein p53 ; metabolism
7.The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells.
Won Gu KIM ; Hyun Jeung CHOI ; Tae Yong KIM ; Young Kee SHONG ; Won Bae KIM
The Korean Journal of Internal Medicine 2014;29(4):474-481
BACKGROUND/AIMS: 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that monitors intracellular AMP/adenosine triphosphate (ATP) ratios and is a key regulator of the proliferation and survival of diverse malignant cell types. In the present study, we investigated the effect of activating AMPK by 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) in thyroid cancer cells. METHODS: We used FRO thyroid cancer cells harboring the BRAF(V600E) mutation to examine the effect of AICAR on cell proliferation and cell survival. We also evaluated the involvement of mitogen-activated protein kinase (MAPK) pathways in this effect. RESULTS: We found that AICAR treatment promoted AMPK activation and suppressed cell proliferation and survival by inducing p21 accumulation and activating caspase-3. AICAR significantly induced activation of p38 MAPK, and pretreatment with SB203580, a specific inhibitor of the p38 MAPK pathway, partially but significantly rescued cell survival. Furthermore, small interfering RNA targeting AMPK-alpha1 abolished AICAR-induced activation of p38 MAPK, p21 accumulation, and activation of caspase-3. CONCLUSIONS: Our findings demonstrate that AMPK activation using AICAR inhibited cell proliferation and survival by activating p38 MAPK and proapoptotic molecules in FRO thyroid cancer cells. These results suggest that the AMPK and p38 MAPK signaling pathways may be useful therapeutic targets to treat thyroid cancer.
AMP-Activated Protein Kinases/genetics/metabolism
;
Aminoimidazole Carboxamide/*analogs & derivatives/pharmacology
;
Antineoplastic Agents/*pharmacology
;
Caspase 3/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cell Survival/drug effects
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
Enzyme Activators/pharmacology
;
Humans
;
Mutation
;
Protein Kinase Inhibitors/pharmacology
;
Proto-Oncogene Proteins B-raf/genetics
;
RNA Interference
;
Ribonucleotides/*pharmacology
;
Signal Transduction/*drug effects
;
Thyroid Neoplasms/*enzymology/genetics/pathology
;
Time Factors
;
Transfection
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism
8.Effect of downregulation of Tiam1 by siRNA on esophageal squamous cell carcinoma EC9706 cells.
Huaimin LIU ; Lifeng JIANG ; Xiaoli LIU ;
Chinese Journal of Oncology 2014;36(4):250-256
OBJECTIVETo explore the effect of downregulation of Tiam1 by siRNA on the esophageal squamous cell carcinoma (ESCC) EC9706 cells, and provide theoretical basis for gene therapy of ESCC using Tiam1 as a molecular target.
METHODSTiam1 siRNA was transfected into EC9706 cells, and expression changes of Tiam1 mRNA and protein after transfection were detected by quantitative real-time PCR and Western blotting. Cell proliferation was analyzed using CCK-8 kit. Cell cycle and apoptosis of the EC9706 cells were assessed by flow cytometry. Cell cycle-related proteins and cell apoptosis-associated proteins were analyzed by Western blotting.
RESULTSCompared with the untreated group and control siRNA group, the relative expression levels of Tiam1 mRNA (1.00 and 0.11 ± 0.02) were not significantly different (P > 0.05). The relative expression levels of Tiam1 mRNA in the Tiam1 siRNA group at 24, 48 and 72 h after transfection were 0.30 ± 0.04, 0.09 ± 0.01 and 0.09 ± 0.006, respectively, significantly lower than that of the untreated group (P < 0.05 for all). The expression level of Tiam1 protein at 24 h after Tiam1 siRNA transfection in the EC9706 cells was 0.11 ± 0.02, significantly lower than that in the un-treated group (0.44 ± 0.05) and control siRNA group (0.44 ± 0.04, P < 0.05 for all). The percentages of G0/G1 cells in the Tiam1 siRNA group, untreated group and control siRNA group were (54.48 ± 2.14)%, (40.69 ± 1.85)% and (41.78 ± 1.31)%, respectively (P < 0.01). The percentages of S phase cells in the Tiam1 siRNA group, untreated group and control siRNA group were (27.18 ± 1.65)%, (32.32 ± 1.15)% and (30.35 ± 1.09)%, respectively (P < 0.01). The expression levels of cyclin D1 protein in the untreated group, control siRNA group and Tiam1 siRNA group were 0.43 ± 0.02, 0.41 ± 0.01 and 0.11 ± 0.02, respectively (P < 0.05). The expression levels of p27 protein in the untreated group, control siRNA group and Tiam1 siRNA group were 0.10 ± 0.01, 0.09 ± 0.02 and 0.20 ± 0.02, respectively (P < 0.05). The ratios of early apoptotic cells in the untreated group, control siRNA group and Tiam1 siRNA group were (10 ± 0.9)%, (10 ± 0.5)% and (27 ± 0.7)%, respectively (P < 0.01). The expression levels of Mcl-1 protein in EC9706 cells of untreated group, control siRNA group and Tiam1 siRNA group were 0.47 ± 0.12, 0.48 ± 0.13 and 0.16 ± 0.02, respectively (P < 0.05). The expression levels of Bcl-2 protein in EC9706 cells of the untreated group, control siRNA group and Tiam1 siRNA group were 0.49 ± 0.08, 0.50 ± 0.05 and 0.04 ± 0.03, respectively (P < 0.05). The caspase-3 activities in the untreated group, control siRNA group and Tiam1 siRNA group were 2.3 ± 0.09, 2.3 ± 0.10 and 16.0 ± 1.50, respectively; and that of caspase-9 were 2.3 ± 0.08, 2.3 ± 0.11 and 14.5 ± 0.9, respectively (P < 0.05 for all).
CONCLUSIONSTiam1 siRNA can significantly inhibit the proliferation of esophageal cancer EC9706 cells, induce cell cycle arrest and cell apoptosis. These effects are related to the regulation of the expressions of cell cycle-related genes (cyclin D1 and p27) and cell apoptosis-related genes (Mcl-1, Bcl-1, caspase-3 and caspase-9) by Tiam1 siRNA.
Apoptosis ; Carcinoma, Squamous Cell ; genetics ; metabolism ; pathology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Cycle Checkpoints ; Cell Line, Tumor ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p27 ; metabolism ; Down-Regulation ; Esophageal Neoplasms ; genetics ; metabolism ; pathology ; Guanine Nucleotide Exchange Factors ; genetics ; metabolism ; Humans ; Myeloid Cell Leukemia Sequence 1 Protein ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA Interference ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; genetics ; T-Lymphoma Invasion and Metastasis-inducing Protein 1 ; Transfection
9.Effect of honokiol on proliferation and apoptosis in HL-60 cells and its potential mechanism.
Jia-Xin FAN ; Ying-Jian ZENG ; Guang-Yang WENG ; Jian-Wei WU ; Zhang-Qiu LI ; Yuan-Ming LI ; Rong ZHENG ; Kun-Yuan GUO
Journal of Experimental Hematology 2014;22(6):1577-1583
This study was aimed to investigate the effect of Honokiol (HNK) on proliferation and apoptosis of acute myeloid leukemia HL-60 cells and its potential mechanism. Inhibitory effect of HNK on the HL-60 cell proliferation was detected by MTT assay. Flow cytometry was used to detect the change of cell cycle and AnnexinV/PI staining was used to detect apoptosis. Western blot was applied to analyze the cell cycle protein (cyclins), cyclin-dependent kinase (CDK), P53, P21, P27, BCL-2, BCL-XL, Bax, caspase-3/9 and proteins for MAPK signal pathway. The results showed that HNK could inhibit the proliferation of HL-60 cells in time- and dose dependent ways. HNK arrested HL-60 cells in G0/G1 phase, and S phase cells decreased significantly (P < 0.05). The expression of cyclin D1, cyclin A, cyclin E and CDK2/4/6 were significantly down-regulated (P < 0.05), the expression of P53 and P21 was significantly upregulated after treating for 24 h with HNK (P < 0.05). After 24 h treatment with HNK, HL-60 cell apoptosis increased significantly with the upregulation of activated caspase-3, -9, BAX expression and the downregulation of BCL-2, BCL-XL expression. The MAPK subfamily, P38 and JNK were not significantly changed, but the expression of MEK1/2-ERK1/2 was significantly downregulated (P < 0.05). It is concluded that HNK arrestes the cells at G0/G1 phase and induces HL-60 cell apoptosis through the intervention of MEK1/2-ERK1/2 signaling pathway.
Apoptosis
;
drug effects
;
Biphenyl Compounds
;
pharmacology
;
Caspase 3
;
Cell Cycle
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
Cyclin E
;
Cyclin-Dependent Kinase 2
;
HL-60 Cells
;
Humans
;
Lignans
;
pharmacology
;
Oncogene Proteins
;
Signal Transduction
;
bcl-2-Associated X Protein
10.Anti-cancer effects of novel doxorubicin prodrug PDOX in MCF-7 breast cancer cells.
Jue ZHANG ; Liang HE ; Xia-fei GENG ; Raymond A FIRESTONE ; Ya-ping HONG ; Yan LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(4):521-528
Ac-Phe-Lys-PABC-DOX (PDOX) is a smart doxorubicin (DOX) prodrug designed to decrease toxicities while maintaining the potent anticancer effects of DOX. This study was aimed at elucidating the effectiveness and toxicities of DOX and PDOX in patient-derived MCF-7 breast cancer cells in vitro. The MCF-7 cells were exposed to both PDOX and DOX, and cytotoxicities, cell cycle and P53/P21 signaling alterations were studied. Abundant cathepsin B was found in the MCF-7 cells, and treatment with PDOX and DOX triggered dose- and time-dependent cytotoxicity and resulted in a significant reduction in cell viability. The IC50 of PDOX and DOX was 3.91 and 0.94 μmol/L, respectively. Both PDOX and DOX caused an up-regulation of the P53/P21-related signal pathway, and PDOX significantly increased expression of P53 and caspase 3, and arrested the cell cycle at the G1/G2 phase. As compared with DOX, PDOX reduced toxicities, and it may have different action mechanisms on breast cancer cells.
Antibiotics, Antineoplastic
;
pharmacology
;
Breast Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
Caspase 3
;
metabolism
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase Inhibitor p21
;
biosynthesis
;
Doxorubicin
;
analogs & derivatives
;
pharmacology
;
Drug Screening Assays, Antitumor
;
methods
;
Female
;
G1 Phase
;
drug effects
;
G2 Phase
;
drug effects
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Oligopeptides
;
pharmacology
;
Signal Transduction
;
drug effects
;
Tumor Suppressor Protein p53
;
biosynthesis

Result Analysis
Print
Save
E-mail