1.Terpinen-4-ol inhibits proliferation of VSMCs exposed to high glucose via regulating KLF4/NF-κB signaling pathway.
Li HE ; Lin ZHANG ; Ju ZHANG ; Hong JIANG ; Yong-Xiang HE ; Dong-Guo LENG ; Ying-Xin GONG ; Ding YANG ; Yan SONG ; Chuan-Yin XIONG ; Yan-Yan ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2530-2537
This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.
NF-kappa B/metabolism*
;
Interleukin-18/metabolism*
;
Proliferating Cell Nuclear Antigen/genetics*
;
Cyclin D1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Muscle, Smooth, Vascular
;
Cell Proliferation
;
Signal Transduction
;
Cytokines/metabolism*
;
Glucose/metabolism*
2.Aloin inhibits gastric cancer cell proliferation and migration by suppressing the STAT3/HMGB1 signaling pathway.
Fei GE ; Mengqi WAN ; Zhenyu CHENG ; Xuelei CHEN ; Qianyi CHEN ; Zhilin QI
Journal of Southern Medical University 2023;43(5):702-709
OBJECTIVE:
To investigate the molecular mechanism underlying the inhibitory effect of aloin on the proliferation and migration of gastric cancer cells.
METHODS:
Human gastric cancer MGC-803 cells treated with 100, 200 and 300 μg/mL aloin were examined for changes in cell viability, proliferation and migration abilities using CCK-8, EdU and Transwell assays. HMGB1 mRNA level in the cells was detected with RT-qPCR, and the protein expressions of HMGB1, cyclin B1, cyclin E1, E-cadherin, MMP-2, MMP-9 and p-STAT3 were determined using Western blotting. JASPAR database was used to predict the binding of STAT3 to HMGB1 promoter. In a BALB/c-Nu mouse model bearing subcutaneous MGC-803 cell xenograft, the effect of intraperitoneal injection of aloin (50 mg/kg) on tumor growth was observed. The protein expressions of HMGB1, cyclin B1, cyclin E1, E-cadherin, MMP-2, MMP-9 and p-STAT3 in the tumor tissue was examined using Western blotting, and tumor metastasis in the liver and lung tissues was detected using HE staining.
RESULTS:
Treatment with aloin concentration-dependently inhibited the viability of MGC-803 cells (P < 0.05), significantly reduced the number of EdU-positive cells (P < 0.01), and attenuated the migration ability of the cells (P < 0.01). Aloin treatment dose-dependently down-regulated HMGB1 mRNA expression (P < 0.01), lowered the protein expressions of HMGB1, cyclin B1, cyclin E1, MMP-2, MMP-9 and p-STAT3, and up-regulated E-cadherin expression in MGC-803 cells. Prediction based on JASPAR database suggested that STAT3 could bind to the promoter region of HMGB1. In the tumor-bearing mice, aloin treatment significantly reduced the tumor size and weight (P < 0.01), lowered the protein expressions of cyclin B1, cyclin E1, MMP-2, MMP-9, HMGB1 and p-STAT3 and increased the expression of E-cadherin in the tumor tissue (P < 0.01).
CONCLUSION
Aloin attenuates the proliferation and migration of gastric cancer cells by inhibiting the STAT3/HMGB1 signaling pathway.
Humans
;
Animals
;
Mice
;
Stomach Neoplasms
;
Cyclin B1
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
HMGB1 Protein
;
Signal Transduction
;
Cell Proliferation
;
STAT3 Transcription Factor
3.Synergistic Antitumor Effect of Everolimus Combined with Gemcitabine on Diffuse Large B-Cell Lymphoma.
Xiu-Qin ZUO ; Chun-Lian TAN ; Xiao-Ming LI ; Tao MA
Journal of Experimental Hematology 2023;31(1):81-88
OBJECTIVE:
To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL.
METHODS:
The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1.
RESULTS:
Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05).
CONCLUSION
EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.
Humans
;
Gemcitabine
;
Everolimus/pharmacology*
;
Survivin/pharmacology*
;
Cyclin D1/pharmacology*
;
Myeloid Cell Leukemia Sequence 1 Protein
;
Cell Line, Tumor
;
Cell Proliferation
;
TOR Serine-Threonine Kinases
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Cell Cycle Proteins
;
Lymphoma, Large B-Cell, Diffuse
4.Effects of Methionine Restriction on Proliferation, Cell Cycle, and Apoptosis of Human Acute Leukemia Cells.
Yu-Jie HE ; Si-Shu YU ; Bin ZHANG ; Mei-Rong LI ; Li-Jun XU ; Long-Ming LIANG ; Zheng-Gang ZHAO ; Zi-Jian ZHAO ; Su-Jin ZHOU ; Fang-Hong LI
Journal of Experimental Hematology 2023;31(5):1290-1295
OBJECTIVE:
To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells.
METHODS:
Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay.
RESULTS:
Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells.
CONCLUSION
Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.
Humans
;
Cyclin B1/pharmacology*
;
Cell Proliferation
;
Methionine/pharmacology*
;
Cell Cycle
;
Apoptosis
;
Leukemia, Myeloid, Acute
;
Cell Division
;
Cell Cycle Proteins
;
Jurkat Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
HL-60 Cells
5.The diagnostic value of CCNB3 and BCOR expression in BCOR-CCNB3 sarcoma.
Lan LI ; Ming ZHANG ; Xiao Qi SUN ; Ting Ting ZHANG ; Yi DING
Chinese Journal of Pathology 2022;51(12):1235-1239
Objective:b> To investigate the diagnostic value of expression of CCNB3 and BCOR in BCOR-CCNB3 sarcoma (BCS). Methods:b> Fifteen cases of BCS confirmed by fluorescence in situ hybridization (FISH) and/or reverse transcription-polymerase chain reaction (RT-PCR) from January 2014 to October 2021 at Beijing Jishuitan Hospital were collected. Immunohistochemical EnVision method was used to detect the expression of CCNB3 and BCOR in 15 cases of BCS and in 65 non-BCS tumors (54 cases of Ewing's sarcoma, 5 cases of CIC rearranged sarcoma, 4 cases of synovial sarcoma, 1 case of mesenchymal chondrosarcoma and 1 case of soft tissue clear cell sarcoma). Results:b> Immunohistochemical staining for CCNB3 revealed strongly diffuse nuclear staining in 14 of 15 (14/15) BCS cases, whereas none of the 65 non-BCS tumors showed any staining. Immunohistochemical staining for BCOR showed strongly diffuse nuclear staining in 11 (11/14) BCS cases; seven of the 65 (7/65, 10.8%) non-BCS tumors showed variable staining (five cases of Ewing sarcoma, one cases of synovial sarcoma, and one case of mesenchymal chondrosarcoma). The sensitivity and specificity of CCNB3 in diagnosing BCS were 93.3% and 100% and these of BCOR were 78.6% and 89.2%, respectively. Conclusions:b> CCNB3 is a highly sensitive and specific marker for BCS.The antibody may help screening BCS.
Humans
;
Sarcoma, Synovial/genetics*
;
In Situ Hybridization, Fluorescence
;
Cyclin B/genetics*
;
Proto-Oncogene Proteins/genetics*
;
Repressor Proteins/genetics*
6.Potential Oncogenic Role of the Papillary Renal Cell Carcinoma Gene in Non-Small Cell Lung Cancers
Sun Hee JANG ; Yuzhu JIANG ; Sun SHIN ; Seung Hyun JUNG ; Chan Kwon JUNG ; Yeun Jun CHUNG
Yonsei Medical Journal 2019;60(4):326-335
PURPOSE: Papillary renal cell carcinoma (PRCC) gene, which located in 1q23.1, is recurrently amplified in non-small cell lung cancer (NSCLC). However, it is unknown whether PRCC is overexpressed in primary NSCLCs and whether PRCC overexpression contributes to lung tumorigenesis. In this study, we aimed to identify the profiles of PRCC expression in Korean NSCLC patients and to elucidate the role of PRCC overexpression on lung tumorigenesis. MATERIALS AND METHODS: We performed immunohistochemistry analysis with a tissue array containing 161 primary NSCLCs. Small interfering RNA targeting PRCC (siPRCC) was transfected into two lung cancer cell lines (NCI-H358 and A549), after which tumor growth, migration, and invasion were observed. Expressions of cell proliferation-, cell cycle-, and metastasis-related molecules were examined by Western blot analysis. We also explored the in vivo effect of PRCC silencing. RESULTS: PRCC overexpression was recurrently observed in NSCLCs (95/161, 59%). After siPRCC treatment, tumor cell proliferation, colony formation, and anchorage independent growth were significantly reduced (p < 0.001 for all three effects). Migration and invasiveness were also significantly repressed (p < 0.001 for both effects). Reflecting cell proliferation, cell cycle, and metastasis, the expressions of Ki67, cyclin D1, AKT-1, pAKT, NF-kB p65, vimentin and CXCL-12 were found to be downregulated. Through mouse xenograft analysis, we confirmed that PRCC silencing significantly repressed a xenograft tumor mass in vivo (p < 0.001). CONCLUSION: The present data provide evidence that PRCC overexpression is involved in the tumorigenesis and progression of lung cancer.
Animals
;
Blotting, Western
;
Carcinogenesis
;
Carcinoma, Non-Small-Cell Lung
;
Carcinoma, Renal Cell
;
Cell Cycle
;
Cell Line
;
Cell Proliferation
;
Cyclin D1
;
Heterografts
;
Humans
;
Immunohistochemistry
;
Lung Neoplasms
;
Lung
;
Mice
;
Neoplasm Metastasis
;
NF-kappa B
;
RNA, Small Interfering
;
Vimentin
7.RNA-sequencing Profiles of Cell Cycle–Related Genes Upregulated during the G2-Phase in Giardia lamblia
Juri KIM ; Mee Young SHIN ; Soon Jung PARK
The Korean Journal of Parasitology 2019;57(2):185-189
To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.
Aphidicolin
;
Cell Culture Techniques
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cyclin B
;
Gene Expression Profiling
;
Genes, cdc
;
Giardia lamblia
;
Giardia
;
Nocodazole
;
Spindle Poles
8.Discovery of an Indirubin Derivative as a Novel c-Met Kinase Inhibitor with In Vitro Anti-Tumor Effects
Karyn Muzinga NDOLO ; Su Jin AN ; Kyeong Ryang PARK ; Hyo Jeong LEE ; Kyoung Bin YOON ; Yong Chul KIM ; Sun Young HAN
Biomolecules & Therapeutics 2019;27(2):216-221
The c-Met protein is a receptor tyrosine kinase involved in cell growth, proliferation, survival, and angiogenesis of several human tumors. Overexpression of c-Met has been found in gastric cancers and correlated with a poor prognosis. Indirubin is the active component of Danggui Longhui Wan, which is a traditional Chinese antileukemic recipe. In the present study, we tested the anti-cancer effects of an indirubin derivative, LDD-1937, on human gastric cancer cells SNU-638. When we performed the in vitro kinase assay against the c-Met activity, LDD-1937 inhibited the activity of c-Met. This result was confirmed by immunoblot and immunofluorescence of phosphorylated c-Met. Immunoblot analysis showed that LDD-1937 decreased the expression of the Erk1/2, STAT3, STAT5, and Akt, downstream proteins of c-Met. In addition, LDD-1937 reduced the cell viability and suppressed colony formation and migration of SNU-638 cells. Furthermore, LDD-1937 induced G2/M phase arrest in the SNU-638 cells by decreasing the expression levels of cyclin B1 and CDC2. Cleaved-PARP, an apoptosis-related protein, was up-regulated in cells treated with LDD-1937. Overall, this study suggests that LDD-1937 may be a novel small-molecule with therapeutic potential for selectively inhibiting c-Met and c-Met downstream pathways in human gastric cancers overexpressing c-Met.
Asian Continental Ancestry Group
;
Cell Survival
;
Cyclin B1
;
Fluorescent Antibody Technique
;
Humans
;
In Vitro Techniques
;
Phosphotransferases
;
Prognosis
;
Protein-Tyrosine Kinases
;
Stomach Neoplasms
9.Genistein Inhibits Proliferation of BRCA1 Mutated Breast Cancer Cells: The GPR30-Akt Axis as a Potential Target
Ga Yun KIM ; Jinyoung SUH ; Jeong Hoon JANG ; Do Hee KIM ; Ock Jin PARK ; Sue K PARK ; Young Joon SURH
Journal of Cancer Prevention 2019;24(4):197-207
BACKGROUND: BRCA1 mutated breast cancer cells exhibit the elevated cell proliferation and the higher metastatic potential. G protein-coupled receptor 30 (GPR30) has been shown to regulate growth of hormonally responsive cancers, such as ovarian and breast cancers, and high expression of GPR30 is found in estrogen receptor (ER)-negative breast cancer cells. ER-negative breast cancer patients often have a mutation in the tumor suppressor gene, BRCA1. This study explored antiproliferative effects of genistein, a chemopreventive isoflavone present in legumes, and underlying molecular mechanisms in triple negative breast cancer cells with or without functionally active BRCA1.METHODS: Expression of BRCA1, GPR30 and Nrf2 was measured by Western blot analysis. Reactive oxygen species (ROS) accumulation was monitored by using the fluorescence-generating probe, 2’,7’-dichlorofluorescein diacetate. The effects of genistein on breast cancer cell viability and proliferation were assessed by the MTT, migration and clonogenic assays.RESULTS: The expression of GPR30 was dramatically elevated at both transcriptional and translational levels in BRCA1 mutated breast cancer cells compared to cells with wild-type BRCA1. Notably, there was diminished Akt phosporylation in GPR30 silenced cells. Treatment of BRCA1 silenced breast cancer cells with genistein resulted in the down-regulation of GPR30 expression and the inhibition of Akt phosphorylation as well as the reduced cell viability, migration and colony formation. Genistein caused cell cycle arrest at the G₂/M phase in BRCA1-mutant cells through down-regulation of cyclin B1 expression. Furthermore, BRCA1-mutant breast cancer cells exhibited higher levels of intracellular ROS than those in the wild-type cells. Genistein treatment lowered the ROS levels through up-regulation of Nrf2 expression.CONCLUSIONS: Lack of functional BRCA1 activates GPR30 signaling, thereby stimulating Akt phosphorylation and cell proliferation. Genistein induces G2/M phase arrest by down-regulating cyclin B1 expression, which is attributable to its suppression of GPR30 activation and Akt phosphorylation in BRCA1 impaired breast cancer cells.
Blotting, Western
;
Breast Neoplasms
;
Breast
;
Cell Cycle Checkpoints
;
Cell Proliferation
;
Cell Survival
;
Cyclin B1
;
Down-Regulation
;
Estrogens
;
Fabaceae
;
Genes, Tumor Suppressor
;
Genistein
;
Humans
;
Phosphorylation
;
Reactive Oxygen Species
;
Triple Negative Breast Neoplasms
;
Up-Regulation
10.Helicobacter pylori inhibited cell proliferation in human periodontal ligament fibroblasts through the Cdc25C/CDK1/cyclinB1 signaling cascade
Huanying LI ; Dongsheng LIANG ; Naiming HU ; Xingzhu DAI ; Jianing HE ; Hongmin ZHUANG ; Wanghong ZHAO
Journal of Periodontal & Implant Science 2019;49(3):138-147
PURPOSE: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. METHODS: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. RESULTS: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. CONCLUSIONS: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.
Blotting, Western
;
CDC2 Protein Kinase
;
Cell Count
;
Cell Cycle
;
Cell Proliferation
;
Coculture Techniques
;
Colon
;
Cyclin B1
;
Cytoplasm
;
Fibroblasts
;
Flow Cytometry
;
Fluorescent Antibody Technique
;
G2 Phase
;
Helicobacter pylori
;
Helicobacter
;
Humans
;
Methods
;
Microscopy, Electron, Transmission
;
Mouth
;
Periodontal Ligament
;
Periodontitis
;
Periodontium
;
Phosphorylation
;
Real-Time Polymerase Chain Reaction
;
Serine
;
Tyrosine

Result Analysis
Print
Save
E-mail