1.Baicalin improves inflammatory response of human microglia by regulating cAMP-PKA-NF-κB/CREB pathway.
Xiao-Yu ZHENG ; Ye-Hao ZHANG ; Wen-Ting SONG ; Guang-Yu LIU ; Zhao DING ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2023;48(21):5863-5870
This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 μmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 μmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 μmol·L~(-1) BAI significantly increased the SOD activity and 5 μmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1β, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.
Humans
;
NF-kappa B/metabolism*
;
Microglia
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Superoxide Dismutase/metabolism*
2.Comparison of the effect between electroacupuncture and NSAIDs on pain memory based on cAMP/PKA/CREB pathway in anterior cingulate gyrus.
Jing SUN ; Jian-Qiao FANG ; Zui SHEN ; Yi-Lin ZHU ; Qin CHEN ; Fang FANG ; Jia-Ling WANG ; Fei LI ; Xiao-Mei SHAO
Chinese Acupuncture & Moxibustion 2020;40(4):397-404
OBJECTIVE:
To observe the direct intervention effects of electroacupuncture (EA) and non-steroid anti-inflammatory drugs (NSAIDs) on pain memory, and to explore their effects on cAMP/PKA/cAMP pathway in anterior cingulate gyrus (ACC).
METHODS:
Fifty clean healthy male SD rats were randomly divided into a control group, a model group, an indomethacin group, an EA group and a sham EA group, 10 rats in each group. Except the control group, the pain memory model was established in the remaining four groups by twice injection of carrageenan at foot; 0.1 mL of 2%λ-carrageenan was subcutaneously injected at the left foot of rats; 14 days later, when the pain threshold of rats of each group returned to the basic level, the second injection was performed with the same procedure. The rats in the EA group were treated with EA at bilateral "Zusanli" (ST 36) for 30 min; the rats in the indomethacin group was treated with indomethacin intragastric administration with the dose of 3 mg/kg; the rats in the sham EA group was treated with EA without electricity at the point 0.3 mm forward "Zusanli" (ST 36) with the depth of 2 mm for 30 min; the rats in the control group was not given any invention. All the above interventions were performed 5 h, 1 d, 2 d and 3 d after the second injection of 2% λ-carrageenan. The left-side paw withdrawal thresholds (PWT) were observed before the first injection, 4 h, 3 d, 5 d after the first injection, before the second injection and 4 h, 1 d, 2 d, 3 d after the second injection. Three days after the second injection, the number of positive cells of cAMP, p-PKA, p-CREB and the number of positive cells of protein co-expression in the right ACC brain area were detected by immunofluorescence, and the relative protein expression of p-PKA and p-CREB were detected by Western blot.
RESULTS:
Compared with the control group, the PWTs in the model group decreased significantly 4 h, 3 d and 5 d after the first injection and 1 d, 2 d and 3 d after the second injection (<0.05); compared with the control group, the positive expression of cAMP, p-PKA and p-CREB in the right ACC brain area in the model group increased significantly (<0.05), and the number of positive cells of the co-expression of cAMP/p-PKA and p-PKA/p-CREB also increased significantly (<0.05). Compared with the model group, indomethacin group and sham EA group, the PWTs in the EA group were increased significantly 1 d, 2 d and 3 d after the second injection (<0.05); compared with the model group, indomethacin group and sham EA group, the positive expression of p-PKA and p-CREB in the right ACC brain area in the EA group decreased significantly (<0.05), and the number of positive cells of co-expression of cAMP/p-PKA and p-PKA/p-CREB was decreased significantly (<0.05). Compared with the model group and sham EA group, the positive expression of cAMP in the right ACC brain area was decreased in the EA group (<0.05).
CONCLUSION
EA have a direct intervention effect on pain memory, which have significant advantage over NSAIDs in the treatment of chronic pain. The advantage effect of EA on pain memory may be related to the inhibition of cAMP/PKA/CREB pathway in ACC area.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
therapeutic use
;
Cyclic AMP
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Electroacupuncture
;
Gyrus Cinguli
;
metabolism
;
Male
;
Pain Threshold
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
3.Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway.
You-Chao QI ; Guo-Zhen DUAN ; Wei MAO ; Qian LIU ; Yong-Liang ZHANG ; Pei-Feng LI
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):898-906
Taurochenodeoxycholic acid (TCDCA) is one of the main effective components of bile acid, playing critical roles in apoptosis and immune responses through the TGR5 receptor. In this study, we reveal the interaction between TCDCA and TGR5 receptor in TGR5-knockdown H1299 cells and the regulation of inflammation via the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element binding (CREB) signal pathway in NR8383 macrophages. In TGR5-knockdown H1299 cells, TCDCA significantly activated cAMP level via TGR5 receptor, indicating TCDCA can bind to TGR5; in NR8383 macrophages TCDCA increased cAMP content compared to treatment with the adenylate cyclase (AC) inhibitor SQ22536. Moreover, activated cAMP can significantly enhance gene expression and protein levels of its downstream proteins PKA and CREB compared with groups of inhibitors. Additionally, TCDCA decreased tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-12 through nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activity. PKA and CREB are primary regulators of anti-inflammatory and immune response. Our results thus demonstrate TCDCA plays an essential anti-inflammatory role via the signaling pathway of cAMP-PKA-CREB induced by TGR5 receptor.
Animals
;
Cell Line
;
Cyclic AMP/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cytokines/metabolism*
;
Humans
;
Inflammation
;
Macrophages
;
Rats
;
Receptors, G-Protein-Coupled/metabolism*
;
Signal Transduction/drug effects*
;
Taurochenodeoxycholic Acid/pharmacology*
4.The effect of vitamin D on sperm motility and the underlying mechanism.
Kadiliya JUERAITETIBAIKE ; Zheng DING ; Dan-Dan WANG ; Long-Ping PENG ; Jun JING ; Li CHEN ; Xie GE ; Xu-Hua QIU ; Bing YAO
Asian Journal of Andrology 2019;21(4):400-407
Vitamin D deficiency is a common health issue around the world. We therefore evaluated the associations of semen quality with both serum and seminal plasma vitamin D levels and studied the mechanisms underlying these by incubating spermatozoa with 1,25(OH)2D In vitro. Two hundred and twenty-two men were included in our study. Vitamin D was detected using an electrochemiluminescence method. Spermatozoa used for In vitro experiments were isolated by density gradient centrifugation. Positive relationships of serum 25(OH)D with semen volume and seminal plasma fructose were identified. Seminal plasma 25(OH)D level showed no relationship with serum 25(OH)D level, while it was inversely associated with sperm concentration and positively correlated with semen volume and sperm kinetic values. In vitro, sperm kinetic parameters increased after incubation with 1,25(OH)2D, especially upon incubation for 30 min with it at a concentration of 0.1 nmol l-1. Under these incubation conditions, the upward migration of spermatozoa increased remarkably with increasing adenosine triphosphate (ATP) concentration. The concentration of cyclic adenosine monophosphate (cAMP) and the activity of protein kinase A (PKA) were both elevated, and the PKA inhibitor, N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89) reversed the increase of ATP production. The concentrations of cytoplasmic calcium ions and nicotinamide adenine dinucleotide (NADH) were both enhanced, while mitochondrial calcium uniporter (MCU) inhibitor, Ruthenium 360 (Ru360) did not reverse the increase of ATP production. Therefore, seminal plasma vitamin D may be involved in regulating sperm motility, and 1,25(OH)2D may enhance sperm motility by promoting the synthesis of ATP both through the cAMP/PKA pathway and the increase in intracellular calcium ions.
Adenosine Triphosphate/metabolism*
;
Adult
;
Calcium/metabolism*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Humans
;
Male
;
Semen/metabolism*
;
Semen Analysis
;
Signal Transduction/physiology*
;
Sperm Motility/physiology*
;
Spermatozoa/metabolism*
;
Vitamin D/pharmacology*
;
Vitamin D Deficiency/blood*
;
Wit and Humor as Topic
;
Young Adult
5.Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm.
Diana ITZHAKOV ; Yeshayahu NITZAN ; Haim BREITBART
Asian Journal of Andrology 2019;21(4):337-344
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l-1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02-0.1 μmol l-1), whereas higher concentrations (>5 μmol l-1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
8-Bromo Cyclic Adenosine Monophosphate/pharmacology*
;
Acrosome/metabolism*
;
Acrosome Reaction/drug effects*
;
Calcimycin/pharmacology*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors*
;
Exocytosis/drug effects*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Humans
;
Male
;
Protein Kinase Inhibitors/pharmacology*
;
Signal Transduction/drug effects*
;
Spermatozoa/metabolism*
;
Thapsigargin/pharmacology*
6.Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease.
Jun-Ting YANG ; Zhao-Jun WANG ; Hong-Yan CAI ; Li YUAN ; Meng-Ming HU ; Mei-Na WU ; Jin-Shun QI
Neuroscience Bulletin 2018;34(5):736-746
Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.
Alzheimer Disease
;
metabolism
;
pathology
;
psychology
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Disease Models, Animal
;
Female
;
Hippocampus
;
metabolism
;
pathology
;
Humans
;
Inflammation
;
metabolism
;
pathology
;
psychology
;
Male
;
Maze Learning
;
physiology
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Neurofibrillary Tangles
;
metabolism
;
pathology
;
Plaque, Amyloid
;
metabolism
;
pathology
;
psychology
;
Presenilin-1
;
genetics
;
metabolism
;
Sex Characteristics
;
Spatial Memory
;
physiology
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
;
tau Proteins
;
genetics
;
metabolism
7.Effect of Zhenwu Tang on regulating of "AVP-V2R-AQP2" pathway in NRK-52E cells.
Xiao-Jie ZHOU ; Yu-Ting BAO ; Hong-Shu CHEN ; Ling XUAN ; Xue-Ming CHEN ; Jie-Ying ZHANG ; Yuan-Xiao YANG ; Chang-Yu LI
China Journal of Chinese Materia Medica 2018;43(3):603-608
This study was aimed to investigate the effect and mechanism of Zhenwu Tang on AVP-V2R-AQP2 pathway in NRK-52E cells . Forty eight male SD rats were randomly divided into eight groups with 6 animals in each group. Distilled water or 22.68 g·kg⁻¹·d⁻¹ Zhenwu Tang(calculated by raw drug dosage meter) was given by gavage. Blood samples were collected by cardiac puncture, and the medicated serum was centrifuged from the blood by 3 000 r·min⁻¹. NRK-52E cells were treated with different medicated serum or dDAVP. The condition of cell proliferation was detected by RTCA. The distribution of V2R and AQP2 in cells were detected by immunofluorescence. The expression of V2R, PKA and AQP2 were detected by Western blot and AQP2 mRNA level was detected by real-time PCR. Results showed that the level of AQP2 mRNA(<0.01) and protein expression of V2R, PKA and AQP2(<0.05, <0.01, <0.05) of Z7d group which was treated with Zhenwu Tang medicated serum for 24 h were significantly higher than that of normal rat serum group. And the expression level of V2R, p-AQP2 and AQP2(<0.01, <0.05, <0.01) of Z7d+dDAVP group were significantly increased comparing to normal rat serum group. The results indicate that the applying of Zhenwu Tang medicated serum could increase the expression level of V2R, PKA and AQP2 which exist in AVP-V2R-AQP2 pathway in NRK-52E, and there is synergistic effect between Zhenwu Tang medicated serum and dDAVP. So the pathway of AVP-V2R-AQP2 may be one of the mechanism for which Zhenwu Tang regulate balance of water transportation.
Animals
;
Aquaporin 2
;
metabolism
;
Cell Line
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
cytology
;
Male
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Vasopressin
;
metabolism
;
Signal Transduction
8.Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder.
Rong-Yi ZHOU ; Jiao-Jiao WANG ; Yue YOU ; Ji-Chao SUN ; Yu-Chen SONG ; Hai-Xia YUAN ; Xin-Min HAN
Chinese Journal of Contemporary Pediatrics 2017;19(5):576-582
OBJECTIVETo study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD).
METHODSA total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA.
RESULTSCompared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05).
CONCLUSIONSBoth methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.
Adenosine Triphosphatases ; metabolism ; Adenylyl Cyclases ; physiology ; Animals ; Attention Deficit Disorder with Hyperactivity ; drug therapy ; physiopathology ; Cyclic AMP ; physiology ; Cyclic AMP-Dependent Protein Kinases ; physiology ; Flavonoids ; pharmacology ; therapeutic use ; L-Lactate Dehydrogenase ; metabolism ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Signal Transduction ; drug effects ; Synaptosomes ; chemistry ; ultrastructure
9.Effect of electro-acupuncture at Neiguan (PC6) and Lieque (LU7) on the expression of protein kinases in cardiomyocytes of myocardial ischemia rats.
Ying WANG ; Di LI ; Jian-Yu DAI ; Yu-Fu LIU ; Qin JING ; Xi WANG ; Lie WANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(3):338-342
OBJECTIVETo study the effect of electro-acupuncture (EA) at Neiguan (PC6) and Lieque (LU7) on the expression of protein kinases in cardiomyocytes of myocardial ischemia (MI) rats.
METHODSHealthy male SD rats were randomly divided into the control group, the model group, the Neiguan point group, the Lieque point group, and the non-meridian non-acupoint group, 10 in each group by random digit table. The MI rat model was established by injecting isoprenaline hydrochloride (85 mg/kg). EA at Neiguan (PC6), Lieque (LU7), and non-meridian non-acupoint were respectively performed. Changes of the expression of protein kinases [such as protein kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG)] in rat cardiomyocytes were observed using Western blot.
RESULTSCompared with the control group, expression levels of PKA, PKC, and PKG increased obviously in the model group (P < 0.01). Compared with the model group, expression levels of PKA, PKC, and PKG decreased in the Neiguan point group and the Lieque point group (P < 0.01, P < 0.05). Expression levels of PKA decreased in the non-meridian non-acupoint group (P < 0.01). Compared with the Neiguan point group, expression levels of PKA, PKC, and PKG increased in the non-meridian non-acupoint group and the Lieque point group (P < 0.01, P < 0.05). Compared with the Lieque point group, expression levels of PKA, PKC, and PKG increased in the non-meridian non-acupoint group (P < 0.01, P < 0.05).
CONCLUSIONEA at Neiguan (PC6) and Lieque (LU7) could decrease protein expression levels of PKA, PKC and PKG in rat myocardial cells, and the effect of acupuncture at Neiguan (PC6) was better than that obtained by EA at Lieque (LU7).
Acupuncture Points ; Acupuncture Therapy ; Animals ; Coronary Artery Disease ; Cyclic AMP-Dependent Protein Kinases ; Electroacupuncture ; Male ; Meridians ; Myocardial Ischemia ; metabolism ; therapy ; Myocytes, Cardiac ; metabolism ; Plant Extracts ; Protein Kinases ; metabolism ; Rats ; Rats, Sprague-Dawley
10.Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats.
Hai-Ying TONG ; Jisiguleng WU ; Liang-Feng BAI ; Wu-Ye BAO ; Rilebagen HU ; Jing LI ; Yue ZHANG
China Journal of Chinese Materia Medica 2014;39(10):1946-1950
OBJECTIVETo observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats.
METHODSixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA).
RESULTThe AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P < 0.05 or P < 0.01). However, the AC activity, cAMP and PKA quantity of rat hippocampus and prefrontal cortex in the fluoxetine group and the Mongolian pharmaceutical Betel shisanwei ingredients pill group indecreased significantly than those of model group (P < 0.01 or P < 0.05). Especially for the high dose group of Mongolian pharmaceutical Betel shisanwei ingredients pill.
CONCLUSIONThe AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.
Adenylyl Cyclases ; genetics ; metabolism ; Animals ; Cyclic AMP ; metabolism ; Cyclic AMP-Dependent Protein Kinases ; genetics ; metabolism ; Depression ; drug therapy ; genetics ; metabolism ; Drugs, Chinese Herbal ; administration & dosage ; Hippocampus ; drug effects ; metabolism ; Humans ; Male ; Mice ; Prefrontal Cortex ; drug effects ; metabolism ; Rats ; Rats, Wistar ; Signal Transduction ; drug effects

Result Analysis
Print
Save
E-mail