1.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
2.Hypaphorine alleviates Crohn's disease-like colitis in mice by inhibiting intestinal epithelial inflammatory response and protecting intestinal barrier function.
Qingqing HUANG ; Jingjing YANG ; Xuening JIANG ; Wenjing ZHANG ; Yu WANG ; Lugen ZUO ; Lian WANG ; Yueyue WANG ; Xiaofeng ZHANG ; Xue SONG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2456-2465
OBJECTIVES:
To investigate the effect of hypaphorine (HYP) on Crohn's disease (CD)‑like colitis in mice and its molecular mechanism.
METHODS:
Thirty male C57BL/6J mice were equally randomized into WT, TNBS, and HYP groups, and in the latter two groups, mouse models of CD-like colitis were established using TNBS with daily gavage of 15 mg/kg HYP or an equivalent volume of saline. The treatment efficacy was evaluated by assessing the disease activity index (DAI), body weight changes, colon length and histopathology. The effect of HYP was also tested in a LPS-stimulated Caco-2 cell model mimicking intestinal inflammation by evaluating inflammatory responses and barrier function of the cells using qRT-PCR and immunofluorescence staining. GO and KEGG analyses were conducted to explore the therapeutic mechanism of HYP, which was validated in both the cell and mouse models using Western blotting.
RESULTS:
In the mouse models of CD-like colitis, HYP intervention obviously alleviated colitis as shown by significantly reduced body weight loss, colon shortening, DAI and inflammation scores, and expressions of pro-inflammatory factors in the colon tissues. HYP treatment also significantly increased the TEER values, reduced bacterial translocation to the mesenteric lymph nodes, liver, and spleen, lowered serum levels of I-FABP and FITC-dextran, increased the number of colonic tissue cup cells, and upregulated colonic expressions of MUC2 and tight junction proteins (claudin-1 and ZO-1) in the mouse models. In LPS-stimulated Caco-2 cells, HYP treatment significantly inhibited the expressions of pro-inflammatory factors and increased the expressions of tight junction proteins. Western blotting showed that HYP downregulated the expressions of the key proteins in the TLR4/MyD88 signaling pathway in both the in vitro and in vivo models.
CONCLUSIONS
HYP alleviates CD-like colitis in mice possibly by suppressing intestinal epithelial inflammation and improving gut barrier function.
Animals
;
Male
;
Mice, Inbred C57BL
;
Crohn Disease/drug therapy*
;
Mice
;
Humans
;
Caco-2 Cells
;
Intestinal Mucosa/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Inflammation
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Intestinal Barrier Function
3.Niranthin ameliorates Crohn's disease-like enteritis in mice by inhibiting intestinal epithelial cell apoptosis and protecting intestinal barrier via modulating p38/JNK signaling.
Lu TAO ; Yue CHEN ; Linlin HUANG ; Wang ZHENG ; Xue SONG ; Ping XIANG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2483-2495
OBJECTIVES:
To investigate the therapeutic effect of the natural compound niranthin on Crohn's disease-like colitis in mice and explore the underlying molecular mechanisms.
METHODS:
In a mouse model of colitis induced by 2,4,6-trinitro-benzenesulfonic acid (TNBS), the therapeutic effect of niranthin was evaluated by observing the changes in body weight, disease activity index (DAI), and colon length of the mice. The levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-17A and IL-10) in the intestinal mucosal tissue were detected using ELISA and quantitative real-time PCR (qRT-PCR). TUNEL staining and Western blotting were used to assess intestinal epithelial cell apoptosis and the expressions of Bcl-2 and Bax. The expression levels of tight junction proteins (ZO-1 and claudin-1) and the activation of the p38/JNK signaling pathway were investigated using Western blotting, and diprovocim intervention experiments were conducted to explore the molecular regulatory mechanism of niranthin.
RESULTS:
Niranthin treatment significantly increased body weight of TNBS-treated mice, lowered the DAI and histological inflammation scores, and increased colon length of the mice. The niranthin-treated mouse models showed obviously reduced protein and mRNA levels of IL-6, IL-1β, IL-17A, and TNF-α and upregulated expression of IL-10 in the colon tissue. TUNEL staining and Western blotting demonstrated that niranthin significantly inhibited intestinal epithelial cell apoptosis and activated the anti-apoptotic pathway in the mouse models. Niranthin treatment obviously upregulated the expression levels of ZO-1 and claudin-1 and downregulated the phosphorylation levels of p38 and JNK in the colon tissues of the mice. Diprovocim intervention obviously attenuated the inactivation of the p38/JNK signaling pathway induced by niranthin in the mouse models.
CONCLUSIONS
Niranthin ameliorates TNBS-induced Crohn's disease-like colitis in mice by inhibiting intestinal epithelial cell apoptosis and protecting the integrity of the intestinal barrier via regulating the activation of the p38/JNK signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Mice
;
Intestinal Mucosa/drug effects*
;
Crohn Disease/drug therapy*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Male
4.Asperosaponin VI alleviates TNBS-induced Crohn's disease-like colitis in mice by reducing intestinal epithelial cell apoptosis via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Minzhu NIU ; Lixia YIN ; Ting DUAN ; Ju HUANG ; Jing LI ; Zhijun GENG ; Jianguo HU ; Chuanwang SONG
Journal of Southern Medical University 2024;44(12):2335-2346
OBJECTIVES:
To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.
METHODS:
Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR. The effects of AVI on barrier function and apoptosis of mouse intestinal epithelial cells and TNF‑α‑treated Caco-2 cells were analyzed using immunofluorescence staining, TUNEL assay, and Western blotting. Network pharmacology, TUNEL assay, and Western blotting were performed to explore and validate the therapeutic mechanisms of AVI for CD.
RESULTS:
In the mouse models of CD-like colitis, AVI significantly improved body weight loss, colon shortening and DAI and tissue inflammation scores, alleviated intestinal villi and goblet cell injuries, and lowered the expressions of inflammatory factors. AVI treatment significantly reduced the loss of tight junction proteins and apoptosis in both mouse intestinal epithelial cells and TNF‑α-stimulated Caco-2 cells. KEGG enrichment pathway analysis suggested that the therapeutic effect of AVI on CD was associated with inhibition of PI3K/AKT/NF-κB pathway activation, which was confirmed by lowered expressions of p-PI3K, p-AKT, and p-p65 in AVI-treated mouse models and Caco-2 cells. In Caco-2 cells, Recilisib significantly blocked the inhibitory effect of AVI on the PI3K/AKT/NF-κB pathway and TNF-α-induced apoptosis, and AKT1 knockdown experiment confirmed the role of the PI3K/AKT pathway for mediating the activation of downstream NF-κB signaling.
CONCLUSIONS
AVI can improve TNBS-induced CD-like colitis in mice by reducing intestinal epithelial cell apoptosis and intestinal barrier damage via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Saponins/therapeutic use*
;
Mice
;
Crohn Disease/metabolism*
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Humans
;
Caco-2 Cells
;
Phosphatidylinositol 3-Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Epithelial Cells/drug effects*
;
Trinitrobenzenesulfonic Acid
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor.
Jia-Cheng SHEN ; Qin QI ; Dong HAN ; Yuan LU ; Rong HUANG ; Yi ZHU ; Lin-Shan ZHANG ; Xiu-di QIN ; Fang ZHANG ; Huan-Gan WU ; Hui-Rong LIU
Journal of Integrative Medicine 2023;21(2):194-204
OBJECTIVE:
This study was conducted to explore the mechanism of intestinal inflammation and barrier repair in Crohn's disease (CD) regulated by moxibustion through bile acid (BA) enterohepatic circulation and intestinal farnesoid X receptor (FXR).
METHODS:
Sprague-Dawley rats were randomly divided into control group, CD model group, mild moxibustion group and herb-partitioned moxibustion group. CD model rats induced by 2,4,6-trinitrobenzene sulfonic acid were treated with mild moxibustion or herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6). The changes in CD symptoms were rated according to the disease activity index score, the serum and colon tissues of rats were collected, and the pathological changes in colon tissues were observed via histopathology. Western blot, immunohistochemistry (IHC) and immunofluorescence were used to evaluate the improvement of moxibustion on intestinal inflammation and mucosal barrier in CD by the BA-FXR pathway.
RESULTS:
Mild moxibustion and herb-partitioned moxibustion improved the symptoms of CD, inhibited inflammation and repaired mucosal damage to the colon in CD rats. Meanwhile, moxibustion could improve the abnormal expression of BA in the colon, liver and serum, downregulate the expression of interferon-γ and upregulate the expression of FXR mRNA, and inhibit Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA. The IHC results showed that moxibustion could upregulate the expression of FXR and mucin2 and inhibit TLR4 expression. Western blot showed that moxibustion inhibited the protein expression of TLR4 and MyD88 and upregulated the expression of FXR. Immunofluorescence image analysis showed that moxibustion increased the colocalization sites and intensity of FXR with TLR4 or nuclear factor-κB p65. In particular, herb-partitioned moxibustion has more advantages in improving BA and upregulating FXR and TLR4 in the colon.
CONCLUSION
Mild moxibustion and herb-partitioned moxibustion can improve CD by regulating the enterohepatic circulation stability of BA, activating colonic FXR, regulating the TLR4/MyD88 pathway, inhibiting intestinal inflammation and repairing the intestinal mucosal barrier. Herb-partitioned moxibustion seems to have more advantages in regulating BA enterohepatic circulation and FXR activation. Please cite this article as: Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. J Integr Med. 2023; 21(2): 194-204.
Rats
;
Animals
;
Crohn Disease/pathology*
;
Moxibustion/methods*
;
Toll-Like Receptor 4/metabolism*
;
Rats, Sprague-Dawley
;
Myeloid Differentiation Factor 88/metabolism*
;
Colitis
;
Inflammation
;
Enterohepatic Circulation
;
RNA, Messenger/metabolism*
7.Acupuncture and Moxibustion Inhibited Intestinal Epithelial-Mesenchymal Transition in Patients with Crohn's Disease Induced by TGF- β 1/Smad3/Snail Pathway: A Clinical Trial Study.
Sen GUO ; Jing ZHOU ; Liang ZHANG ; Chun-Hui BAO ; Ji-Meng ZHAO ; Yan-Ling GAO ; Pin WU ; Zhi-Jun WENG ; Yin SHI
Chinese journal of integrative medicine 2022;28(9):823-832
OBJECTIVE:
To explore whether acupuncture combined with moxibustion could inhibit epithelialmesenchymal transition in Crohn's disease by affecting the transforming growth factor β 1 (TGF- β 1)/Smad3/Snail pathway.
METHODS:
Sixty-three patients with Crohn's disease were randomly divided into an observation group (31 cases) receiving moxibustion at 43 °C combined with acupuncture, and a control group (32 cases) receiving moxibustion at 37 °C combined with sham acupuncture using a random number table. Patients were treated for 12 weeks. Crohn's Disease Activity Index (CDAI) was used to evaluate disease activity. Hematoxylin-eosin staining and transmission electron microscopy were utilized to observe the morphological and ultrastructural changes. Immunohistochemistry was used to detect the expression of transforming growth factor β 1 (TGF-β 1), T β R1, T β R2, Smad3, Snail, E-cadherin and fibronectin in intestinal mucosal tissues.
RESULTS:
The decrease of the CDAI score, morphological and ultrastructural changes were more significant in observation group. The expression levels of TGF- β 1, Tβ R2, Smad3, and Snail in the observation group were significantly lower than those before the treatment (P<0.05 or P<0.01). After treatment, the expression levels of TGF-β 1, TβR2, and Snail in the observation group were significantly lower than those in the control group (all P<0.05); compared with the control group, the expression of fibronectin in the observation group was significantly decreased, and the expression of E-cadherin was significantly increased (all P<0.05).
CONCLUSIONS
Moxibustion at 43 °C combined with acupuncture may suppress TGF-β 1/Smad3/Snail pathway-mediated epithelial-mesenchymal transition of intestinal epithelial cells in Crohn's disease patients by inhibiting the expression levels of TGF-β 1, Tβ R2, Smad3, and Snail. (Registration No. ChiCTR-IIR-16007751).
Acupuncture Therapy
;
Cadherins/metabolism*
;
Crohn Disease/therapy*
;
Epithelial-Mesenchymal Transition
;
Fibronectins/metabolism*
;
Humans
;
Moxibustion
;
Smad3 Protein/metabolism*
;
Snail Family Transcription Factors/metabolism*
;
Transforming Growth Factor beta1/metabolism*
8.Expression of TIM-3, Human beta-defensin-2, and FOXP3 and Correlation with Disease Activity in Pediatric Crohn's Disease with Infliximab Therapy.
Mi Jin KIM ; Woo Yong LEE ; Yon Ho CHOE
Gut and Liver 2015;9(3):370-380
BACKGROUND/AIMS: This study investigated the expression of T cell immunoglobulin- and mucin-domain-containing molecule 3 (TIM-3), human beta-defensin (HBD)-2, forkhead box protein 3 (FOXP3), and the frequency of CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in children with Crohn's disease (CD) during infliximab therapy. METHODS: We enrolled 20 CD patients who received infliximab treatment for 1 year. Peripheral blood and colonic mucosal specimens were collected from all CD patients and from healthy control individuals. RESULTS: A significant difference in TIM-3 mRNA expression was evident in peripheral blood mononuclear cells and colonic mucosa between CD patients before infliximab therapy and the healthy controls (p<0.001 and p=0.005, respectively). A significant difference in HBD-2 mRNA expression was found in colonic mucosa between CD patients before infliximab therapy and the healthy controls (p=0.013). In the active phase of CD, at baseline, the median percentage of T cells that were CD25+ FOXP3+ was 1.5% (range, 0.32% to 3.49%), which increased after inflixmab treatment for 1 year to 2.2% (range, 0.54% to 5.02%) (p=0.008). CONCLUSIONS: Our study suggests that both the adaptive and innate immune systems are closely linked to each other in CD pathogenesis. And the results of our study indicate that it could be a useful therapeutic tool, where restoration of TIM-3, HBD-2 and the function of Tregs may repair the dysfunctional immunoregulation in CD.
Adolescent
;
Case-Control Studies
;
Colon/immunology
;
Crohn Disease/*drug therapy/immunology/*metabolism
;
Female
;
Forkhead Transcription Factors/*metabolism
;
Gastrointestinal Agents/*therapeutic use
;
Humans
;
Infliximab/*therapeutic use
;
Intestinal Mucosa/immunology
;
Leukocytes, Mononuclear/*metabolism
;
Male
;
Membrane Proteins/*metabolism
;
T-Lymphocytes, Regulatory/immunology
;
beta-Defensins/*metabolism
9.Cross-Regulation of Innate and Adaptive Immunity: A New Perspective for the Pathogenesis of Inflammatory Bowel Disease.
Gut and Liver 2015;9(3):263-264
No abstract available.
Crohn Disease/*drug therapy/*metabolism
;
Female
;
Forkhead Transcription Factors/*metabolism
;
Gastrointestinal Agents/*therapeutic use
;
Humans
;
Infliximab/*therapeutic use
;
Leukocytes, Mononuclear/*metabolism
;
Male
;
Membrane Proteins/*metabolism
;
beta-Defensins/*metabolism
10.Changing Paradigm in the Management of Inflammatory Bowel Disease.
The Korean Journal of Gastroenterology 2015;65(5):268-272
Inflammatory bowel disease (IBD) is a chronic progressive idiopathic inflammatory disorder that involves the digestive tract from the mouth to the anus. Over the past decades, many therapeutic strategies have been developed to manage IBD, but therapeutic strategies based only on relief of clinical symptoms have not changed the natural history of this disease entity. This underlines the importance of understanding the natural history of IBD itself. When we look at the natural history of Crohn's disease (CD), it first begins with inflammation of the intestinal mucosa and this inflammatory reaction proceeds to stenosing or penetrating reaction if not adequately controlled. However, it takes a considerable amount of time before mucosal inflammation proceeds to stenosis of the intestinal lumen or penetration into the adjacent bowel. Therefore, it can be expected that if proper care is given during that period, progression of CD to such a complicated disease could be prevented. Even though the concept of mucosal healing was introduced in the early 1990s, no correlation could be observed between healing of mucosal lesions and relief of clinical symptoms. However, the introduction of biologic agents targeting tumor necrosis factor has changed the way to treat IBD that is refractory to standard medications and has allowed us to aim for a new therapeutic goal, 'deep remission'. Further advances in biologic agents have provided highly effective treatments for IBD, making deep remission a realistic goal. Whether IBD patients may benefit by experiencing a 'deep' remission beyond the control of clinical symptoms need to be evaluated in further investigation. Nevertheless, it can be anticipated that attaining deep remission might ultimately have an impact on important outcomes such as the need for surgery and the quality of life.
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
;
Antibodies, Monoclonal/therapeutic use
;
Colitis, Ulcerative/drug therapy/metabolism/pathology
;
Crohn Disease/drug therapy/metabolism/pathology
;
Humans
;
Inflammatory Bowel Diseases/drug therapy/metabolism/*pathology
;
Intestinal Mucosa/metabolism/pathology
;
Mesalamine/therapeutic use
;
Tumor Necrosis Factor-alpha/immunology/metabolism

Result Analysis
Print
Save
E-mail