1.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
2.Mechanism of auraptene in improving acute liver injury induced by diquat poisoning in mice.
Renyang OU ; Shan HUANG ; Lihong MA ; Zhijie ZHAO ; Shengshan LIU ; Yuanliang WANG ; Yezi SUN ; Nana XU ; Lijun ZHOU ; Mei LI ; Manhong ZHOU ; Guosheng RAO
Chinese Critical Care Medicine 2025;37(6):590-594
OBJECTIVE:
To investigate whether auraptene (AUR) exerts a protective effect on acute diquat (DQ)-induced liver injury in mice and explore its underlying mechanisms.
METHODS:
Forty SPF-grade healthy male C57BL/6 mice were randomly divided into normal control group (Control group), DQ poisoning model group (DQ group), AUR treatment group (DQ+AUR group), and AUR control group (AUR group), with 10 mice in each group. The DQ poisoning model was established via a single intraperitoneal injection of 40 mg/kg DQ aqueous solution (0.5 mL); Control group and AUR group received an equal volume of pure water intraperitoneally. Four hours post-modeling, DQ+AUR group and AUR group were administered 0.5 mg/kg AUR aqueous solution (0.2 mL) by gavage once daily for 7 consecutive days, while Control group and DQ group received pure water. Blood and liver tissues were collected after anesthesia on day 7. Liver ultrastructure was observed by transmission electron microscopy. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured via enzyme-linked immunosorbent assay (ELISA). Hepatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were detected using WST-1, thiobarbituric acid (TBA), and enzymatic reaction methods, respectively. Protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Kelch-like ECH-associated protein 1 (Keap1), and activated caspase-9 in liver tissues was analyzed by Western blotting.
RESULTS:
Transmission electron microscopy revealed that mitochondria in the Control group exhibited mild swelling, uneven distribution of matrix, and a small number of cristae fractures. In the AUR group, mitochondria showed mild swelling, with no obvious disruption of cristae structure. In the DQ group, mitochondria demonstrated marked swelling and increased volume, matrix dissolution, loss and fragmentation of cristae, and extensive vacuolization. In contrast, the DQ+AUR group showed significantly reduced mitochondrial swelling, volume increase, matrix dissolution, cristae loss and fragmentation, and vacuolization compared to the DQ group. Compared with the DQ group, the DQ+AUR group exhibited significantly lower serum AST levels (U/L: 173.45±23.60 vs. 255.33±41.51), ALT levels (U/L: 51.77±21.63 vs. 100.70±32.35), and hepatic MDA levels (μmol/g: 12.40±2.76 vs. 19.74±4.10), along with higher hepatic GSH levels (mmol/g: 37.65±14.95 vs. 20.58±8.52) and SOD levels (kU/g: 124.10±33.77 vs. 82.81±22.00), the differences were statistically significant (all P < 0.05). Western blotting showed upregulated Nrf2 expression (Nrf2/β-actin: 0.87±0.37 vs. 0.53±0.22) and HO-1 expression (HO-1/β-actin: 1.06±0.22 vs. 0.49±0.08), and downregulated Keap1 expression (Keap1/β-actin: 0.82±0.12 vs. 1.52±0.76) and activated caspase-9 expression (activated caspase-9/β-actin: 1.16±0.28 vs. 1.71±0.30) in the DQ+AUR group compared to the DQ group (all P < 0.05).
CONCLUSION
AUR attenuates DQ-induced acute liver injury in mice by activating the Keap1/Nrf2 signaling pathway.
Animals
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Liver/pathology*
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Diquat/poisoning*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Apoptosis
;
Coumarins
3.A comprehensive review on wedelolactone: natural sources, total synthesis, and pharmacological activities.
Haiping CAI ; Yue WU ; Xiaojin ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):169-181
Plant-derived natural products have long been a vital source for developing therapeutic drugs. Wedelolactone (WDL), a coumestan isolated from Eclipta prostrata, Wedelia calendulacea, Wedelia chinensis, and Sphagneticola trilobata, demonstrates a broad spectrum of therapeutic potential, including anticancer, anti-inflammatory, anti-obesity, anti-myotoxic, antimicrobial, anti-diabetic, and tissue-protective activities. This review synthesizes information on the isolation, total synthesis, pharmacological activity, underlying mechanisms, and pharmacokinetic properties of WDL. Additionally, it offers insights into potential clinical applications and future drug discovery avenues utilizing WDL or its derivatives, either independently or in combination with other pharmaceuticals.
Coumarins/isolation & purification*
;
Humans
;
Animals
;
Biological Products/chemical synthesis*
;
Molecular Structure
;
Plant Extracts/chemical synthesis*
;
Wedelia/chemistry*
;
Eclipta/chemistry*
4.Identification, characterization, substrate binding mode prediction, and modification of a novel amidohydrolase from Microbulbifer thermotolerans.
Nana XU ; Mingzhu YAN ; Hao WANG ; Xiao LIANG ; Weidong LIU ; Huimin QIN ; Jian GAO
Chinese Journal of Biotechnology 2025;41(9):3567-3578
Ochratoxin A (OTA) is ubiquitous in the food and feed fields. It has strong hepatotoxicity and nephrotoxicity, seriously threatening the health of humans and animals. Enzymatic degradation of mycotoxins is considered to be a promising method to control mycotoxin contaminations. In this study, a new ochratoxin A amidohydrolase from Microbulbifer thermotolerans (MiADH) was obtained. After heterologous expression in Escherichia coli and purification, the recombinant protein was studied regarding the hydrolysis activity, hydrolysis products, enzymatic properties, and substrate binding mode. MiADH can degrade OTA into ochratoxin α (OTα) and phenylalanine, demonstrating a detoxifying ability. It demonstrated the best performance at 70 ℃ and pH 8.0, and Cu2+ had the strongest inhibitory effect on the activity of MiADH. MiADH with good thermal stability exhibited huge potential for industrial application. Rational design guided by three-dimensional structural models and substrate docking analysis revealed the important amino acids affecting substrate binding and obtained multiple mutants with improved activity. Among these mutants, V324A had the highest activity, which was 4.2-fold that of the wild type. The identification of MiADH enriches the ochratoxin A degradation enzyme library and provides a new candidate enzyme for the biological detoxification of ochratoxin A in the food and feed industry.
Amidohydrolases/chemistry*
;
Ochratoxins/metabolism*
;
Substrate Specificity
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Actinomycetales/genetics*
5.Mechanism of osthole against colorectal cancer based on network pharmacology, molecular docking, and experimental validation.
China Journal of Chinese Materia Medica 2024;49(21):5752-5761
Through in vitro and in vivo experiments, combined with network pharmacology and molecular docking techniques, this study investigated the mechanism of action of osthole in the treatment of colorectal cancer(CRC). The relevant targets of osthole and CRC were retrieved from the SwissTargetPrediction and SuperPred in drug databases, as well as GeneCards and OMIM in disease databases. Protein-protein interaction(PPI) networks were constructed using the STRING database and Cytoscape 3.8.0 software, and core targets were screened. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on common targets. Molecular docking validation of core targets with osthole was conducted using AutoDock Vina software. HCT116 cells were treated with different concentrations of osthole, and cell proliferation was detected using the CCK-8 assay and the clonogenic assay. Cell migration ability was assessed using Transwell assay. Western blot and RT-qPCR were performed to detect the expression of caspase-3(CASP3), hypoxia-inducible factor 1 alpha(HIF1A), nuclear factor kappa B subunit 1(NFKB1), glycogen synthase kinase-3 beta(GSK3B), phosphorylated-GSK3B(p-GSK3B), protein kinase B(Akt), phosphorylated-Akt(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated-mTOR(p-mTOR). A subcutaneous tumor model of HCT116 cells in nude mice was established, and the mice were randomly divided into the model group, low-dose osthole group(20 mg·kg~(-1)), medium-dose osthole group(40 mg·kg~(-1)), and high-dose osthole group(60 mg·kg~(-1)). After 18 days of administration, the growth of tumor xenografts was observed, and the size and weight of tumors were measured after excision. Hematoxylin-eosin(HE) staining was performed to observe the histological changes in tumors in each group. Network pharmacology analysis revealed that osthole treatment of CRC mainly involved 106 treatment targets and 113 treatment pathways, with key pathways including the PI3K/Akt signaling pathway and MAPK signaling pathway. Molecular docking results showed a strong correlation between osthole and core targets. In vitro studies demonstrated that osthole significantly inhibited the proliferation and migration ability of HCT116 cells. Western blot and RT-qPCR experiments showed that compared to those in the model group, the expression of NFKB1, HIF1A, p-Akt, p-mTOR, and GSK3B in the osthole-treated group was significantly decreased, while the expression of CASP3 and p-GSK3B(Ser9) was significantly increased. In vivo studies showed that compared to the model group, osthole-fed animals significantly reduced tumor weight and volume, inhibited tumor growth, and promoted tumor apoptosis, and the results showed a dose-dependent trend. The study suggested that osthole could inhibit the proliferation and migration of HCT116 cells in CRC, and its mechanism may be related to the regulation of the PI3K/Akt signaling pathway and the expression of core targets.
Coumarins/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Colorectal Neoplasms/pathology*
;
Animals
;
Network Pharmacology
;
Mice
;
Cell Proliferation/drug effects*
;
HCT116 Cells
;
Mice, Nude
;
Mice, Inbred BALB C
;
Proto-Oncogene Proteins c-akt/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
6.Expression of β-glucosidase An-bgl3 from Aspergillus niger for conversion of scopolin.
Kunpeng YU ; Cheng PENG ; Yanling LIN ; Lijun LI ; Hui NI ; Qingbiao LI
Chinese Journal of Biotechnology 2023;39(3):1232-1246
Scopoletin is a coumarin compound with various biological activities including detumescence and analgesic, insecticidal, antibacterial and acaricidal effects. However, interference with scopolin and other components often leads to difficulties in purification of scopoletin with low extraction rates from plant resource. In this paper, heterologous expression of the gene encoding β-glucosidase An-bgl3 derived from Aspergillus niger were carried out. The expression product was purified and characterized with further structure-activity relationship between it and β-glucosidase analyzed. Subsequently, its ability for transforming scopolin from plant extract was studied. The results showed that the specific activity of the purified β-glucosidase An-bgl3 was 15.22 IU/mg, the apparent molecular weight was about 120 kDa. The optimum reaction temperature and pH were 55 ℃ and 4.0, respectively. Moreover, 10 mmol/L metal ions Fe2+ and Mn2+ increased the enzyme activity by 1.74-fold and 1.20-fold, respectively. A 10 mmol/L solution containing Tween-20, Tween-80 and Triton X-100 all inhibited the enzyme activity by 30%. The enzyme showed affinity towards scopolin and tolerated 10% methanol and 10% ethanol solution, respectively. The enzyme specifically hydrolyzed scopolin into scopoletin from the extract of Erycibe obtusifolia Benth with a 47.8% increase of scopoletin. This demonstrated that the β-glucosidase An-bgl3 from A. niger shows specificity on scopolin with good activities, thus providing an alternative method for increasing the extraction efficiency of scopoletin from plant material.
Aspergillus niger/genetics*
;
beta-Glucosidase/chemistry*
;
Scopoletin
;
Polysorbates
;
Coumarins
7.Three-dimensional multi-component analysis of Aurantii Fructus quality and research on influencing factors.
Zi-Xuan LIU ; Xue-Sen FU ; Ling WANG ; Xiang-Dan LIU ; Ri-Bao ZHOU
China Journal of Chinese Materia Medica 2023;48(1):265-272
The present study explored the consistency of the content proportions of active components of Aurantii Fructus and analyzed the influencing factors based on three-dimensional multi-component analysis. A total of 839 Aurantii Fructus samples in 65 research articles were analyzed using the three-dimensional multi-component analysis mode. The content data of flavonoid components(naringin, hesperidin, neohesperidin, narirutin, and nobiletin), coumarin components(meranzin and gluconolactone), and alkaloid(synephrine) in 386 samples which met the criteria of 2020 edition of the Chinese Pharmacopoeia were extracted and adjusted to percentages, and the content ratios between components were calculated. The influencing factors of Aurantii Fructus quality were analyzed. The results showed content ratios of components as follows: neohesperidin∶naringin in the range of 0.4-1.2; narirutin∶naringin in the range of 0.02-0.16; hesperidin∶naringin in the range of 0.01-0.3; nobiletin∶naringin in the range of 0.000 588 3-0.069 68; synephrine∶naringin in the range of 0.02-0.042; gluconolactone∶naringin in the range of 0.001-0.01; meranzin∶naringin in the range of 0.000 4-0.035. The quality of Aurantii Fructus was closely related to the origin, variety, harvesting time, and processing method of medicinal materials. Harvesting time had a greater impact on the quality of Aurantii Fructus, and the origin and variety had a certain impact on the quality of Aurantii Fructus. The findings of this study indicated that the ratios between flavonoid components, flavonoids and coumarin components, and flavonoids and alkaloids fluctuated. The production base should optimize the varieties, harvesting period, and processing methods of Aurantii Fructus to provide a scientific basis for the production of high-quality Aurantii Fructus.
Citrus
;
Flavonoids/analysis*
;
Drugs, Chinese Herbal
;
Fruit/chemistry*
;
Coumarins/analysis*
;
Chromatography, High Pressure Liquid/methods*
8.Advances in Phytochemistry and Modern Pharmacology of Saposhnikovia Divaricata (Turcz.) Schischk.
Jun-Wen GAO ; Yang ZHAN ; Yun-He WANG ; Shu-Jie ZHAO ; Zhong-Ming HAN
Chinese journal of integrative medicine 2023;29(11):1033-1044
Saposhnikovia divaricata (Turcz.) Schischk (S. divaricata, Fangfeng) is a herb in the Apiaceae family, and its root has been used since the Western Han Dynasty (202 B.C.). Chromones and coumarins are the pharmacologically active substances in S. divaricata. Modern phytochemical and pharmacological studies have demonstrated their antipyretic, analgesic, anti-inflammatory, antioxidant, anti-tumor, and anticoagulant activities. Technological and analytical strategy theory advancements have yielded novel results; however, most investigations have been limited to the main active substances-chromones and coumarins. Hence, we reviewed studies related to the chemical composition and pharmacological activity of S. divaricata, analyzed the developing trends and challenges, and proposed that research should focus on components' synergistic effects. We also suggested that, the structure-effect relationship should be prioritized in advanced research.
Drugs, Chinese Herbal/pharmacology*
;
Coumarins/pharmacology*
;
Apiaceae/chemistry*
;
Chromones
9.Six new coumarins from the roots of Toddalia asiatica and their anti-inflammatory activities.
Haoxuan HE ; Niping LI ; Yunqi FAN ; Qian HUANG ; Jianguo SONG ; Lixia LV ; Fen LIU ; Lei WANG ; Qi WANG ; Jihong GU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):852-858
We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 μmol·L-1, respectively.
Mice
;
Animals
;
Coumarins/chemistry*
;
Rutaceae/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
;
Plant Extracts/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
10.Short-term outcome of patients after transcatheter aortic valve replacement receiving different anticoagulants.
Ying Hao SUN ; Jie LI ; Song Yuan LUO ; Sheng Neng ZHENG ; Jiao Hua CHEN ; Ming FU ; Guang LI ; Rui Xin FAN ; Jian Fang LUO
Chinese Journal of Cardiology 2023;51(8):838-843
Objective: To compare the safety and efficacy of different anticoagulants in patients with indications for anticoagulation after transcatheter aortic valve replacement (TAVR). Methods: This is a retrospective study. Patients who underwent TAVR from April 2016 to February 2022 in Guangdong Provincial People's Hospital and had indications for anticoagulation were included and divided into two groups according to the type of anticoagulants, i.e. non-vitamin K antagonist oral anticoagulant (NOAC) and warfarin, and patients were followed up for 30 days. The primary endpoint was the combination of death, stroke, myocardial infarction, valve thrombosis, intracardiac thrombosis and major bleeding. The incidence of endpoints was compared between two groups, and multivariate logistic regression analysis was applied to adjust the bias of potential confounders. Results: A total of 80 patients were included. Mean age was (74.4±7.1) years, 43 (53.8%) were male. Forty-nine (61.3%) patients used NOAC, 31 used warfarin, and major indication for anticoagulants was atrial fibrillation (76/80, 95.0%). The adjusted risks of the primary endpoint (OR=0.23, 95%CI 0.06-0.94, P=0.040) of NOAC were lower than that of warfarin, mainly driven by a lower risk of major bleeding (OR=0.19, 95%CI 0.04-0.92, P=0.039). Conclusions: The short-term outcome of NOAC is better than that of warfarin in patients with indications for anticoagulation after TAVR. Randomized controlled trials of large sample size with long-term follow-up are needed to further testify this finding.
Humans
;
Male
;
Aged
;
Aged, 80 and over
;
Female
;
Anticoagulants/therapeutic use*
;
Warfarin/therapeutic use*
;
Transcatheter Aortic Valve Replacement
;
Retrospective Studies
;
Hemorrhage
;
Stroke/epidemiology*
;
Atrial Fibrillation/drug therapy*
;
Treatment Outcome
;
Administration, Oral

Result Analysis
Print
Save
E-mail