1.Highly efficient production of L-valine by multiplex metabolic engineering of Corynebacterium glutamicum.
Kuo ZHAO ; Jinyu CHENG ; Liang GUO ; Cong GAO ; Wei SONG ; Jing WU ; Jia LIU ; Yadi LIU ; Liming LIU ; Xiulai CHEN
Chinese Journal of Biotechnology 2023;39(8):3253-3272
As a branched chain amino acid, L-valine is widely used in the medicine and feed sectors. In this study, a microbial cell factory for efficient production of L-valine was constructed by combining various metabolic engineering strategies. First, precursor supply for L-valine biosynthesis was enhanced by strengthening the glycolysis pathway and weakening the metabolic pathway of by-products. Subsequently, the key enzyme in the L-valine synthesis pathway, acetylhydroxylate synthase, was engineered by site-directed mutation to relieve the feedback inhibition of the engineered strain. Moreover, promoter engineering was used to optimize the gene expression level of key enzymes in L-valine biosynthetic pathway. Furthermore, cofactor engineering was adopted to change the cofactor preference of acetohydroxyacid isomeroreductase and branched-chain amino acid aminotransferase from NADPH to NADH. The engineered strain C. glutamicum K020 showed a significant increase in L-valine titer, yield and productivity in 5 L fed-batch bioreactor, up to 110 g/L, 0.51 g/g and 2.29 g/(L‧h), respectively.
Valine
;
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering
;
Amino Acids, Branched-Chain
;
Bioreactors
2.Rational metabolic engineering of Corynebacterium glutamicum for efficient synthesis of L-glutamate.
Jiafeng LIU ; Zhina QIAO ; Youxi ZHAO ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(8):3273-3289
L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.
Glutamic Acid
;
Corynebacterium glutamicum/genetics*
;
Ketoglutaric Acids
;
Metabolic Engineering
;
Alanine
3.Analysis on identification and traceability of one non-toxigenic Corynebacterium diphtheriae from a patient with diabetic foot in Hainan province.
Xiao Jun ZHOU ; Cun Ren CHEN ; Xu Ming WANG ; Hua WU ; Tao HUANG ; Shao Ling WANG ; Lina NIU
Chinese Journal of Preventive Medicine 2022;56(8):1107-1111
There is a rare case of an elderly diabetic with diabetic foot infection at Hainan General Hospital in September 2021, which was diagnosed as Corynebacterium diphtheriae infection incidentally on routine culture with conventional methods and molecular biological approaches, to aid in diagnosis in clinical practice. Owing to smear staining, Albert staining and VITEK 2 system, automated identification systems viz matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) confirmed combing with 16S ribosomal RNA (16S rRNA) gene has been used for the taxonomic classification of bacteria. Otherwise, toxin gene tox was done for diphtheria toxin synthesis. The isolate was Gram-stain-positive, rod-like arrangement with irregular thickness, with characteristic metachromatic granules, ferment most sugars and homology of 16S rRNA analyses with C. diphtheriae NCTC11397T (MW682323.1) was greater than a 100% possibility, toxin gene tox was negative. The findings lay the foundation to clinical identify and trace of non-toxigenic C. diphtheriae. Moreover, this work provides insights into the non-toxigenic C.diphtheriae that contribute to recognized risk of non-toxigenic C.diphtheriae infections.
Aged
;
Corynebacterium/genetics*
;
Corynebacterium diphtheriae/genetics*
;
Diabetes Mellitus
;
Diabetic Foot
;
Diphtheria/microbiology*
;
Humans
;
RNA, Ribosomal, 16S/genetics*
4.Optimization of CRISPR/Cas9-based multiplex base editing in Corynebacterium glutamicum.
Hui LU ; Qi ZHANG ; Sili YU ; Yu WANG ; Ming KANG ; Shuangyan HAN ; Ye LIU ; Meng WANG
Chinese Journal of Biotechnology 2022;38(2):780-795
As a new CRISPR/Cas-derived genome engineering technology, base editing combines the target specificity of CRISPR/Cas and the catalytic activity of nucleobase deaminase to install point mutations at target loci without generating DSBs, requiring exogenous template, or depending on homologous recombination. Recently, researchers have developed a variety of base editing tools in the important industrial strain Corynebacterium glutamicum, and achieved simultaneous editing of two and three genes. However, the multiplex base editing based on CRISPR/Cas9 is still limited by the complexity of multiple sgRNAs, interference of repeated sequence and difficulty of target loci replacement. In this study, multiplex base editing in C. glutamicum was optimized by the following strategies. Firstly, the multiple sgRNA expression cassettes based on individual promoters/terminators was optimized. The target loci can be introduced and replaced rapidly by using a template plasmid and Golden Gate method, which also avoids the interference of repeated sequence. Although the multiple sgRNAs structure is still complicated, the editing efficiency of this strategy is the highest. Then, the multiple gRNA expression cassettes based on Type Ⅱ CRISPR crRNA arrays and tRNA processing were developed. The two strategies only require one single promoter and terminator, and greatly simplify the structure of the expression cassette. Although the editing efficiency has decreased, both methods are still applicable. Taken together, this study provides a powerful addition to the genome editing toolbox of C. glutamicum and facilitates genetic modification of this strain.
CRISPR-Cas Systems/genetics*
;
Corynebacterium glutamicum/metabolism*
;
Gene Editing
;
Plasmids
;
RNA, Guide/metabolism*
5.Construction and application of a synthetic promoter library for Corynebacterium glutamicum.
Moshi LIU ; Jiao LIU ; Guannan SUN ; Fuping LU ; Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2022;38(2):831-842
Promoter is an important genetic tool for fine-tuning of gene expression and has been widely used for metabolic engineering. Corynebacterium glutamicum is an important chassis for industrial biotechnology. However, promoter libraries that are applicable to C. glutamicum have been rarely reported, except for a few developed based on synthetic sequences containing random mutations. In this study, we constructed a promoter library based on the native promoter of odhA gene by mutating the -10 region and the bystanders. Using a red fluorescent protein (RFP) as the reporter, 57 promoter mutants were screened by fluorescence imaging technology in a high-throughput manner. These mutants spanned a strength range between 2.4-fold and 19.6-fold improvements of the wild-type promoter. The strongest mutant exhibited a 2.3-fold higher strength than the widely used strong inducible promoter Ptrc. Sequencing of all 57 mutants revealed that 55 mutants share a 1-4 bases shift (4 bases shift for 68% mutants) of the conserved -10 motif "TANNNT" to the 3' end of the promoter, compared to the wild-type promoter. Conserved T or G bases at different positions were observed for strong, moderate, and weak promoter mutants. Finally, five promoter mutants with different strength were employed to fine-tune the expression of γ-glutamyl kinase (ProB) for L-proline biosynthesis. Increased promoter strength led to enhanced L-proline production and the highest L-proline titer of 6.4 g/L was obtained when a promoter mutant with a 9.8-fold higher strength compared to the wild-type promoter was used for ProB expression. The use of stronger promoter variants did not further improve L-proline production. In conclusion, a promoter library was constructed based on a native C. glutamicum promoter PodhA. The new promoter library should be useful for systems metabolic engineering of C. glutamicum. The strategy of mutating native promoter may also guide the construction of promoter libraries for other microorganisms.
Corynebacterium glutamicum/metabolism*
;
Gene Library
;
Metabolic Engineering
;
Promoter Regions, Genetic/genetics*
6.Biomanufacturing driven by engineered microbes.
Chinese Journal of Biotechnology 2022;38(4):1267-1294
This article summarized the reviews and research articles published in Chinese Journal of Biotechnology in the field of biomanufacturing in 2021. The article covered major chassis cells such as Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, filamentous fungi, non-model bacteria and non-conventional yeasts. Moreover, this article summarized the advances in the production of amino acids, organic acids, vitamins, higher alcohols, natural compounds (terpenoids, flavonoids, alkaloids), antibiotics, enzymes and enzyme-catalyzed products, biopolymers, as well as the utilization of biomass and one-carbon materials. The key technologies used in the construction of cell factories, such as regulation, evolution, and high-throughput screening, were also included. This article may help the readers better understand the R & D trend in biomanufacturing driven by engineered microbes.
Biomass
;
Biotechnology
;
Corynebacterium glutamicum/metabolism*
;
Escherichia coli/metabolism*
;
Metabolic Engineering
;
Saccharomyces cerevisiae/genetics*
7.Identification and analysis of 2 Corynebacterium diphtheria strains in Guangdong Province.
Zhen Cui LI ; Mei Zhen LIU ; Yan Mei FANG ; Zi Jun GONG ; Xu Lin WANG ; Jing Diao CHEN ; Bo Sheng LI
Chinese Journal of Preventive Medicine 2022;56(4):427-432
Objective: To identify and analyze two strains of C. diphtheriae in Guangdong Province by combining whole genome sequencing with traditional detection methods. Methods: The C. diphtheriae was isolated from Guangzhou in 2010 and Zhuhai in 2020 respectively. Isolates were identified by API Coryne strips and MALDI-TOF-MS. Genomic DNA was sequenced by using Illumina. The assembly was performed for each strain using CLC software. J Species WS online tool was used for average nucleoside homology identification, then narKGHIJ and tox gene were detected by NCBI online analysis tool BLSATN. MEGA-X was used to build a wgSNP phylogenetic tree. Results: GD-Guangzhou-2010 was Belfanti and GD-Zuhai-2020 was Gravis. ANIb between GD-Guangzhou-2010 and C. belfantii was 99.61%. ANI between GD-Zhuhai-2020 and C. diphtheriae was 97.64%. BLASTN results showed that the nitrate reduction gene narKGHIJ and tox gene of GD-Guangzhou-2010 was negative, while GD-Zhuhai-2020 nitrate reduction gene narKGHIJ was positive. There were two obvious clades in wgSNP phylogenetic tree. The first clades included all Mitis and Gravis types strains as well as GD-Zhuhai-2020. The second clades contained all isolates of C.belfantii, C.diphtheriae subsp. lausannense and GD-guangzhou-2010. Conclusion: Two non-toxic C. diphtheriae strains are successfully isolated and identified. The phylogenetic tree suggests that GD-Guangzhou-2010 and GD-Zhuhai-2020 are located in two different evolutionary branches.
China/epidemiology*
;
Corynebacterium
;
Corynebacterium diphtheriae/genetics*
;
Diphtheria/microbiology*
;
Humans
;
Nitrates
;
Phylogeny
8.Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
Lijun WANG ; Sihan YAN ; Taowei YANG ; Meijuan XU ; Xian ZHANG ; Minglong SHAO ; Huazhong LI ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(12):4314-4328
5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.
Aminolevulinic Acid/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Rhodobacter capsulatus/enzymology*
;
Rhodopseudomonas/enzymology*
9.Advances in stress tolerance mechanisms and synthetic biology for the industrial robustness of Corynebacterium glutamicum.
Meijuan XU ; Chunyu SHANGGUAN ; Xin CHEN ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(3):831-845
As a model industrial host and microorganism with the generally regarded as safe (GRAS) status, Corynebacterium glutamicum not only produces amino acids on a large scale in the fermentation industry, but also has the potential to produce various new products. C. glutamicum usually encounters various stresses in the process of producing compounds, which severely affect cell viability and production performance. The development of synthetic biology provides new technical means for improving the robustness of C. glutamicum. In this review, we discuss the tolerance mechanisms of C. glutamicum to various stresses in the fermentation process. At the same time, we highlight new synthetic biology strategies for boosting C. glutamicum robustness, including discovering new stress-resistant elements, modifying transcription factors, and using adaptive evolution strategies to mine stress-resistant functional modules. Finally, prospects of improving the robustness of engineered C. glutamicum strains ware provided, with an emphasis on biosensor, screening and design of transcription factors, and utilizing the multiple regulatory elements.
Amino Acids/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Synthetic Biology
10.Current status and future perspectives of metabolic network models of industrial microorganisms.
Chenyang ZHANG ; Yaokang WU ; Xianhao XU ; Xueqin LV ; Jianghua LI ; Guocheng DU ; Long LIU
Chinese Journal of Biotechnology 2021;37(3):860-873
Genome-scale metabolic network model (GSMM) is an extremely important guiding tool in the targeted modification of industrial microbial strains, which helps researchers to quickly obtain industrial microbes with specific traits and has attracted increasing attention. Here we reviewe the development history of GSMM and summarized the construction method of GSMM. Furthermore, the development and application of GSMM in industrial microorganisms are elaborated by using four typical industrial microorganisms (Bacillus subtilis, Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae) as examples. In addition, prospects in the development trend of GSMM are proposed.
Corynebacterium glutamicum/genetics*
;
Escherichia coli/genetics*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*

Result Analysis
Print
Save
E-mail