1.Research progress in active substances and their mechanisms of action against porcine epidemic diarrhea virus.
Yu LIU ; Sisi SU ; Ziqian WANG ; Jiahao WU ; Hongwei CHEN ; Hongzao YANG
Chinese Journal of Biotechnology 2025;41(7):2519-2533
Porcine epidemic diarrhea virus (PEDV) is an intestinal coronavirus that can cause porcine epidemic diarrhea, leading to diarrhea, vomiting, weight loss, and even death in piglets. Due to the diversity of PEDV strains, traditional vaccines are difficult to sustainably and effectively prevent and control PEDV. This article reviews the strategies and mechanisms of active substances in regulating intracellular signaling pathways, viral proteins, and microbial metabolites to enhance the host immune function against PEDV. It emphasizes the prevention of PEDV resistance and the potential harm of PEDV breaking through interspecies barriers to the human society, aiming to provide reliable theoretical support for the development of new antiviral drugs or vaccines.
Porcine epidemic diarrhea virus/immunology*
;
Animals
;
Swine
;
Swine Diseases/prevention & control*
;
Antiviral Agents/pharmacology*
;
Coronavirus Infections/virology*
;
Viral Vaccines/immunology*
;
Humans
;
Signal Transduction
2.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity
3.Optimization of a fluorescent qPCR detection for RNA of SARS-CoV-2.
Xuelong LI ; Junhua LIU ; Qianyang LIU ; Lin YU ; Shanshan WU ; Xiushan YIN
Chinese Journal of Biotechnology 2020;36(4):732-739
We optimized a fluorescent quantitative polymerase chain reaction (qPCR) assay system for rapid and real time detection of SARS-CoV-2 RNA. The results show that the lowest dilution of RNA samples used for the detection of SARS-CoV-2 RNA could reach 1/10 000 (the initial value is set as 10 ng/μL). Moreover, the cycle threshold (Ct) for samples of clinically diagnosed COVID-19 was lower than 35 or 40. The sensitivity of this method was satisfactory. The results were consistent with those of the COVID-19 detection kit on the market under the same conditions, but the number of cycles required was shortened by about 2. Therefore, the optimized assay developed in this study can be used in screening and early clinical diagnosis. Our work provides a tool to facilitate rapid clinical diagnosis of COVID-19.
Betacoronavirus
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
diagnosis
;
virology
;
Early Diagnosis
;
Humans
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
virology
;
Polymerase Chain Reaction
;
methods
;
standards
;
RNA, Viral
;
analysis
;
genetics
;
Sensitivity and Specificity
;
Time Factors
4.Explore the Optimal Resolvent of Medical Needs and Mental Health for Patients with Lung Cancer during Epidemic Novel Coronavirus Pneumonia.
Haiyan XU ; Ke YANG ; Guangjian YANG ; Lu YANG ; Yuling MI ; Xiaohong CUI ; Min YANG ; Dan WANG ; Yan WANG
Chinese Journal of Lung Cancer 2020;23(4):247-254
BACKGROUND:
With the rapid spread of novel coronavirus pneumonia (NCP) worldwide and the escalation of prevention and control efforts, the routine medical needs of patients have been restricted. The aims were to investigate medical needs of lung cancer patients and their mental health status during the epidemic periods, so as to provide rational recommendations for subsequent diagnosis and treatment.
METHODS:
The questionnaire was sent in the form of an electronic questionnaire at 7am on 4th, March, 2020, until 7am 6th, March, 2020, 368 questionnaires were recollected from 25 provinces (autonomous regions/municipalities) in 48 h.
RESULTS:
Of the 368 patients, 18 patients were excluded as they didn't receive anti-tumor treatment, and 350 patients were included in the final analysis. 229 cases were treated with oral targeted drugs, and 121 cases were treated with chemotherapy or immunotherapy. 41.3% of patients treated with intravenous chemotherapy or immunotherapy experienced treatment discontinuation, and the proportion of treatment discontinuation in chemotherapy or immunotherapy was higher than those treated with oral targeted drugs (21.0%). Whether oral targeted drugs or intravenous chemotherapy or immunotherapy, more than 60% of patients experienced delays in imaging examinations. Nearly one third of patients developed new symptoms or exacerbation of existing symptoms. 26.6%-28.9% of patients have changed their treatment plans through online consultation. During novel coronavirus pneumonia, 40%-75% of lung cancer patients have mental health problems, and more than 95% of patients support government's prevention and control measures.
CONCLUSIONS
During the emergence of NCP, the medical needs of patients with lung cancer have not been enough, especially those who discontinued chemotherapy or immunotherapy. When medical institution resumes work, priority should be given to them. At the same time, mental health problems of patients should be valued and resolved timely.
Adult
;
Aged
;
Antineoplastic Agents
;
therapeutic use
;
Betacoronavirus
;
physiology
;
China
;
epidemiology
;
Coronavirus Infections
;
epidemiology
;
virology
;
Female
;
Humans
;
Lung Neoplasms
;
drug therapy
;
psychology
;
Male
;
Middle Aged
;
Pandemics
;
Pneumonia
;
epidemiology
;
virology
;
Pneumonia, Viral
;
epidemiology
;
virology
;
Retrospective Studies
5.Role of cyclophilin A during coronavirus replication and the antiviral activities of its inhibitors.
Lu TIAN ; Wenjun LIU ; Lei SUN
Chinese Journal of Biotechnology 2020;36(4):605-611
Cyclophilin A (CypA) is a widely distributed and highly conserved protein in organisms. It has peptidyl-prolyl cis/trans isomerase activity and is a receptor for cyclosporin A (CsA). Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses. Seven types of coronaviruses are currently known to infect humans, among which SARS-CoV, MERS-CoV, and SARS-CoV-2 are fatal for humans. It is well established that CypA is essential for the replication of various coronaviruses such as SARS-CoV, CoV-229E, CoV-NL63, and FCoV. Additionally, CsA and its derivatives (ALV, NIM811, etc.) have obvious inhibitory effects on a variety of coronaviruses. These results suggest that CypA is a potential antiviral target and the existing drug CsA might be used as an anti-coronavirus drug. At the end of 2019, SARS-CoV-2 raged in China, which seriously theatern human health and causes huge economic lases. In view of this, we describe the effects of CypA on the replication of coronaviruses and the antiviral activities of its inhibitors, which will provide the scientific basis and ideas for the development of antiviral drugs for SARS-CoV-2.
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
growth & development
;
Coronavirus
;
drug effects
;
growth & development
;
Coronavirus Infections
;
drug therapy
;
epidemiology
;
virology
;
Cyclophilin A
;
antagonists & inhibitors
;
Cyclosporine
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
epidemiology
;
virology
;
SARS Virus
;
drug effects
;
growth & development
;
Virus Replication
;
drug effects
6.Strategies for vaccine development of COVID-19.
Limin YANG ; Deyu TIAN ; Wenjun LIU
Chinese Journal of Biotechnology 2020;36(4):593-604
An epidemic of acute respiratory syndrome in humans, which appeared in Wuhan, China in December 2019, was caused by a novel coronavirus (SARS-CoV-2). This disease was named as "Coronavirus Disease 2019" (COVID-19). SARS-CoV-2 was first identified as an etiological pathogen of COVID-19, belonging to the species of severe acute respiratory syndrome-related coronaviruses (SARSr-CoV). The speed of both the geographical transmission and the sudden increase in numbers of cases is much faster than SARS and Middle East respiratory syndrome (MERS). COVID-19 is the first global pandemic caused by a coronavirus, which outbreaks in 211 countries/territories/areas. The vaccine against COVID-19, regarded as an effective prophylactic strategy for control and prevention, is being developed in about 90 institutions worldwide. The experiences and lessons encountered in the previous SARS and MERS vaccine research can be used for reference in the development of COVID-19 vaccine. The present paper hopes to provide some insights for COVID-19 vaccines researchers.
Betacoronavirus
;
immunology
;
Biomedical Research
;
Coronavirus Infections
;
epidemiology
;
immunology
;
prevention & control
;
virology
;
Humans
;
Internationality
;
Middle East Respiratory Syndrome Coronavirus
;
immunology
;
Pandemics
;
prevention & control
;
Pneumonia, Viral
;
epidemiology
;
immunology
;
prevention & control
;
virology
;
SARS Virus
;
immunology
;
Severe Acute Respiratory Syndrome
;
immunology
;
Viral Vaccines
;
immunology
7.Diagnosis, treatment, control and prevention of SARS-CoV-2 and coronavirus disease 2019: back to the future.
Chinese Journal of Biotechnology 2020;36(4):571-592
The ongoing outbreak of the coronavirus disease 2019 (COVID-19) as named by the World Health Organization has millions of confirmed cases around the world and has claimed hundreds of thousands of lives. The virus was named SARS-CoV-2 in February by International Committee on Taxonomy of Viruses. COVID-19 presents as fever, dry cough, dyspnea, headache and pneumonia. In a small subset of severe cases, the disease quickly progresses to respiratory failure and even death. Since the 21st century, there have been three major outbreaks caused by human coronaviruses, including the severe acute respiratory syndrome (SARS) that broke out in 2003, the Middle East respiratory syndrome (MERS) in 2012, and the recent pandemic of COVID-19. Since 2003, significant progress has been made in the study of SARS-CoV and MERS-CoV concerning their natural origins, pathogenesis, antiviral development and vaccine design. Since SARS-CoV-2 and SARS-CoV are closely related, previous findings on SARS-CoV are highly relevant to a better understanding as well as diagnosis, treatment, prevention and control of SARS-CoV-2. In this review, we highlight recent progresses in the field; compare the biological characteristics of SARS-CoV and SARS-CoV-2; summarize the urgently-needed diagnostic, treatment, prevention and control options; and provide future perspectives for the outcome of the outbreak and research questions to be answered, including some of the difficulties in vaccine development. Hopefully, our comments and suggestions would prove useful for the control of the SARS-CoV-2 epidemic in China and the world.
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
immunology
;
pathogenicity
;
Coronavirus Infections
;
diagnosis
;
prevention & control
;
therapy
;
virology
;
Humans
;
Middle East Respiratory Syndrome Coronavirus
;
drug effects
;
immunology
;
pathogenicity
;
Pandemics
;
prevention & control
;
Pneumonia, Viral
;
diagnosis
;
prevention & control
;
therapy
;
virology
;
SARS Virus
;
drug effects
;
immunology
;
pathogenicity
;
Severe Acute Respiratory Syndrome
;
diagnosis
;
prevention & control
;
therapy
;
virology
;
Viral Vaccines
8.Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice.
Jinliang WANG ; Lei SHUAI ; Chong WANG ; Renqiang LIU ; Xijun HE ; Xianfeng ZHANG ; Ziruo SUN ; Dan SHAN ; Jinying GE ; Xijun WANG ; Ronghong HUA ; Gongxun ZHONG ; Zhiyuan WEN ; Zhigao BU
Protein & Cell 2020;11(10):776-782
Adaptation, Physiological
;
Adenosine Monophosphate
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Administration, Intranasal
;
Alanine
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Animals
;
Betacoronavirus
;
genetics
;
physiology
;
Chlorocebus aethiops
;
Coronavirus Infections
;
drug therapy
;
virology
;
Disease Models, Animal
;
Female
;
Host Specificity
;
genetics
;
Lung
;
pathology
;
virology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Mutation, Missense
;
Nasal Mucosa
;
virology
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
RNA, Viral
;
administration & dosage
;
genetics
;
Turbinates
;
virology
;
Vero Cells
;
Viral Load
;
Virus Replication
9.Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids.
Bing ZHAO ; Chao NI ; Ran GAO ; Yuyan WANG ; Li YANG ; Jinsong WEI ; Ting LV ; Jianqing LIANG ; Qisheng ZHANG ; Wei XU ; Youhua XIE ; Xiaoyue WANG ; Zhenghong YUAN ; Junbo LIANG ; Rong ZHANG ; Xinhua LIN
Protein & Cell 2020;11(10):771-775
Betacoronavirus
;
isolation & purification
;
pathogenicity
;
Bile Acids and Salts
;
metabolism
;
Bile Ducts, Intrahepatic
;
pathology
;
virology
;
Cell Culture Techniques
;
Coronavirus Infections
;
complications
;
pathology
;
Cytokine Release Syndrome
;
etiology
;
physiopathology
;
Cytopathogenic Effect, Viral
;
Epithelial Cells
;
enzymology
;
pathology
;
virology
;
Humans
;
Hyperbilirubinemia
;
etiology
;
Liver
;
pathology
;
Organoids
;
pathology
;
virology
;
Pandemics
;
Peptidyl-Dipeptidase A
;
analysis
;
Pneumonia, Viral
;
complications
;
pathology
;
Receptors, Virus
;
analysis
;
Serine Endopeptidases
;
analysis
;
Viral Load

Result Analysis
Print
Save
E-mail