1.Coronavirus Disease 2019 Influenza A in Children: An Observational Control Study in China.
Yang ZHAO ; De Lin SUN ; Heather C BOUCHARD ; Xin Xin ZHANG ; Gang WAN ; Yi Wei HAO ; Shu Xin HE ; Yu Yong JIANG ; Lin PANG
Biomedical and Environmental Sciences 2020;33(8):614-619
This study aimed to understand the differences in clinical, epidemiological, and laboratory features between the new coronavirus disease 2019 (COVID-2019) and influenza A in children. Data of 23 hospitalized children with COVID-19 (9 boys, 5.7 ± 3.8 years old) were compared with age- and sex-matched 69 hospitalized and 69 outpatient children with influenza A from a hospital in China. The participants' epidemiological history, family cluster, clinical manifestations, and blood test results were assessed. Compared with either inpatients or outpatients with influenza A, children with COVID-19 showed significantly more frequent family infections and higher ratio of low fever (< 37.3 °C), but shorter cough and fever duration, lower body temperature, and lower rates of cough, fever, high fever (> 39 °C), nasal congestion, rhinorrhea, sore throat, vomiting, myalgia or arthralgia, and febrile seizures. They also showed higher counts of lymphocytes, T lymphocyte CD8, and platelets and levels of cholinesterase, aspartate aminotransferase, lactate dehydrogenase, and lactic acid, but lower serum amyloid, C-reactive protein, and fibrinogen levels and erythrocyte sedimentation rate, and shorter prothrombin time. The level of alanine aminotransferase in children with COVID-19 is lower than that in inpatients but higher than that in outpatients with influenza A. Pediatric COVID-19 is associated with more frequent family infection, milder symptoms, and milder immune responses relative to pediatric influenza A.
Betacoronavirus
;
physiology
;
Case-Control Studies
;
Child
;
Coronavirus Infections
;
blood
;
epidemiology
;
immunology
;
virology
;
Female
;
Humans
;
Influenza, Human
;
blood
;
epidemiology
;
immunology
;
Male
;
Pandemics
;
Pneumonia, Viral
;
blood
;
epidemiology
;
immunology
;
virology
2.Strategies for vaccine development of COVID-19.
Limin YANG ; Deyu TIAN ; Wenjun LIU
Chinese Journal of Biotechnology 2020;36(4):593-604
An epidemic of acute respiratory syndrome in humans, which appeared in Wuhan, China in December 2019, was caused by a novel coronavirus (SARS-CoV-2). This disease was named as "Coronavirus Disease 2019" (COVID-19). SARS-CoV-2 was first identified as an etiological pathogen of COVID-19, belonging to the species of severe acute respiratory syndrome-related coronaviruses (SARSr-CoV). The speed of both the geographical transmission and the sudden increase in numbers of cases is much faster than SARS and Middle East respiratory syndrome (MERS). COVID-19 is the first global pandemic caused by a coronavirus, which outbreaks in 211 countries/territories/areas. The vaccine against COVID-19, regarded as an effective prophylactic strategy for control and prevention, is being developed in about 90 institutions worldwide. The experiences and lessons encountered in the previous SARS and MERS vaccine research can be used for reference in the development of COVID-19 vaccine. The present paper hopes to provide some insights for COVID-19 vaccines researchers.
Betacoronavirus
;
immunology
;
Biomedical Research
;
Coronavirus Infections
;
epidemiology
;
immunology
;
prevention & control
;
virology
;
Humans
;
Internationality
;
Middle East Respiratory Syndrome Coronavirus
;
immunology
;
Pandemics
;
prevention & control
;
Pneumonia, Viral
;
epidemiology
;
immunology
;
prevention & control
;
virology
;
SARS Virus
;
immunology
;
Severe Acute Respiratory Syndrome
;
immunology
;
Viral Vaccines
;
immunology
3.Diagnosis, treatment, control and prevention of SARS-CoV-2 and coronavirus disease 2019: back to the future.
Chinese Journal of Biotechnology 2020;36(4):571-592
The ongoing outbreak of the coronavirus disease 2019 (COVID-19) as named by the World Health Organization has millions of confirmed cases around the world and has claimed hundreds of thousands of lives. The virus was named SARS-CoV-2 in February by International Committee on Taxonomy of Viruses. COVID-19 presents as fever, dry cough, dyspnea, headache and pneumonia. In a small subset of severe cases, the disease quickly progresses to respiratory failure and even death. Since the 21st century, there have been three major outbreaks caused by human coronaviruses, including the severe acute respiratory syndrome (SARS) that broke out in 2003, the Middle East respiratory syndrome (MERS) in 2012, and the recent pandemic of COVID-19. Since 2003, significant progress has been made in the study of SARS-CoV and MERS-CoV concerning their natural origins, pathogenesis, antiviral development and vaccine design. Since SARS-CoV-2 and SARS-CoV are closely related, previous findings on SARS-CoV are highly relevant to a better understanding as well as diagnosis, treatment, prevention and control of SARS-CoV-2. In this review, we highlight recent progresses in the field; compare the biological characteristics of SARS-CoV and SARS-CoV-2; summarize the urgently-needed diagnostic, treatment, prevention and control options; and provide future perspectives for the outcome of the outbreak and research questions to be answered, including some of the difficulties in vaccine development. Hopefully, our comments and suggestions would prove useful for the control of the SARS-CoV-2 epidemic in China and the world.
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
immunology
;
pathogenicity
;
Coronavirus Infections
;
diagnosis
;
prevention & control
;
therapy
;
virology
;
Humans
;
Middle East Respiratory Syndrome Coronavirus
;
drug effects
;
immunology
;
pathogenicity
;
Pandemics
;
prevention & control
;
Pneumonia, Viral
;
diagnosis
;
prevention & control
;
therapy
;
virology
;
SARS Virus
;
drug effects
;
immunology
;
pathogenicity
;
Severe Acute Respiratory Syndrome
;
diagnosis
;
prevention & control
;
therapy
;
virology
;
Viral Vaccines
4.Coagulation and immune function indicators for monitoring of coronavirus disease 2019 and the clinical significance.
Junhua ZHANG ; Tie LI ; Rong HUANG ; Rong GUI ; Sai CHEN
Journal of Central South University(Medical Sciences) 2020;45(5):525-529
OBJECTIVES:
To explore the significance of coagulation and immune function indicators in clinical diagnosis and treatment of coronavirus disease 2019 (COVID-19).
METHODS:
All patients with COVID-19 diagnosed and treated in First People's Hospital of Yueyang from January to March 2020 were enrolled. The general data of patients were collected. The patients were assigned into a light group (=20), an ordinary group (=33), a severe group (=23), and a critically severe group (=7) according to the severity of the disease. Coagulation and immune function indicators of each group were compared, and the relevance of coagulation and immune function indicators was analyzed.
RESULTS:
The age of COVID-19 patients in Yueyang City was mainly between 45 and 65 years old. There was a significant difference in the coagulation function and immune-related indicators in each group of patients (all <0.05).
CONCLUSIONS
There are some abnormalities in coagulation and immune function in patients with COVID-19, which possess significance for clinical diagnosis and treatment of the disease.
Aged
;
Betacoronavirus
;
Blood Coagulation
;
China
;
Coronavirus Infections
;
diagnosis
;
immunology
;
Humans
;
Immune System
;
physiopathology
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
immunology
5.Detection of serum immunoglobulin M and immunoglobulin G antibodies in 2019 novel coronavirus infected patients from different stages.
Hui-Xia GAO ; Ya-Nan LI ; Zun-Gui XU ; Yu-Ling WANG ; Hai-Bin WANG ; Jin-Feng CAO ; De-Qin YUAN ; Li LI ; Yi XU ; Zhi ZHANG ; Ying HUANG ; Jian-Hua LU ; Yu-Zhen LIU ; Er-Hei DAI
Chinese Medical Journal 2020;133(12):1479-1480
6.From H1N1 to 2019-nCoV, what do we learn?
Gui-E LIU ; Yuan TIAN ; Wen-Jun ZHAO ; Shuang-Ming SONG ; Lei LI
Chinese Journal of Traumatology 2020;23(4):187-189
The COVID-19 pandemic is still raging across the world. Everyday thousands of infected people lost their lives. What is worse, there is no specific medicine and we do not know when the end of the pandemic will come. The nearest global pandemic is the 1918 influenza, which caused about 50 million deaths and partly terminate the World War Ⅰ. We believe that no matter the virus H1N1 for the 1918 influenza or 2019-nCoV for COVID-19, they are essentially the same and the final cause of death is sepsis. The definition and diagnostic/management criteria of sepsis have been modified several times but the mortality rate has not been improved until date. Over decades, researchers focus either on the immunosuppression or on the excessive inflammatory response following trauma or body exposure to harmful stimuli. But the immune response is very complex with various regulating factors involved in, such as neurotransmitter, endocrine hormone, etc. Sepsis is not a kind of disease, instead a misbalance of the body following infection, trauma or other harmful stimulation. Therefore we should re-think sepsis comprehensively with the concept of systemic biology, i.e. inflammationomics.
Betacoronavirus
;
Coronavirus Infections
;
complications
;
epidemiology
;
immunology
;
Humans
;
Immune Tolerance
;
Inflammation
;
complications
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human
;
complications
;
epidemiology
;
immunology
;
Pandemics
;
Pneumonia, Viral
;
complications
;
epidemiology
;
immunology
;
Sepsis
;
etiology
7.A rapid colloidal gold immunochromatographic assay for the diagnosis of coronavirus disease 2019.
Xiao-Ling WANG ; Lei WANG ; Chao-Lu HASI ; Yu-Po WANG ; Ajab KHAN ; Bin-Zhi REN ; Zhi-Zhen LIU ; Shun-Lin HOU ; Li-Hong YANG ; Liao-Yun ZHANG ; Yong-Kang DONG ; Jun XU ; Jun XIE
Chinese Medical Journal 2020;133(16):1986-1988
8.Study on therapeutic effect of Chaiyin Particles on combining disease with syndrome of human coronavirus pneumonia with pestilence attacking lung syndrome based on regulation of immune function.
Yan-Yan BAO ; Yu-Jing SHI ; Shan-Shan GUO ; Zi-Han GENG ; Ying-Jie GAO ; Lei BAO ; Rong-Hua ZHAO ; Jing SUN ; Gui-Min ZHANG ; Yong-Xia GUAN ; Xiao-Lan CUI
China Journal of Chinese Materia Medica 2020;45(13):3020-3027
According to the classification of traditional Chinese medicine syndromes of coronavirus disease 2019 by the national competent authority, this study determined that human coronavirus 229 E(HCoV-229 E) was infected in a mouse model of cold and dampness syndrome, so as to build the human coronavirus pneumonia with pestilence attacking lung syndrome model. The model can simulate the traditional Chinese medicine treatment of common disease syndromes in Coronavirus Disease 2019 Diagnosis and Treatment Program(the sixth edition for trial). Specific steps were as follows. ABALB/c mouse model of cold and dampness syndrome was established, based on which, HCoV-229 E virus was infected; then the experiment was divided into normal control group, infection control group, cold-dampness control group, cold-dampness infection group(the model group), high-dose Chaiyin Particles group(8.8 g·kg~(-1)·d~(-1)), and low-dose Chaiyin Particles group(4.4 g·kg~(-1)·d~(-1)). On the day of infection, Chaiyin Particles was given for three consecutive days. Lung tissues were collected the day after the last dose, and the lung index and inhibition rate were calculated. The nucleic acid of lung tissue was extracted, and the HCoV-229 E virus load was detected by Real-time fluorescent quantitative RT-PCR. Blood leukocytes were separated, and the percentage of T and B lymphocytes was detected by flow cytometry. Lung tissue protein was extracted, and IL-6, IL-10, TNF-α and IFN-γ contents were detected by ELISA. High and low-dose Chaiyin Particles significantly reduced the lung index(P<0.01) of mice of human coronavirus pneumonia with pestilence attacking the lung syndrome, and the inhibition rates were 61.02% and 55.45%, respectively. Compared with the model control group, high and low-dose Chaiyin Particles significantly increased cross blood CD4~+ T lymphocytes, CD8~+T lymphocytes and total B lymphocyte percentage(P<0.05, P<0.01), and reduced IL-10, TNF-α and IFN-γ levels in lungs(P<0.01). In vitro results showed that TC_(50), TC_0, IC_(50) and TI of Chaiyin Particles were 4.46 mg·mL~(-1), 3.13 mg·mL~(-1), 1.12 mg·mL~(-1) and 4. The control group of in vitro culture cells had no HCoV-229 E virus nucleic acid expression. The expression of HCoV-229 E virus nucleic acid in the virus control group was 1.48×10~7 copies/mL, and Chaiyin Particles significantly reduced HCoV-229 E expression at doses of 3.13 and 1.56 mg·mL~(-1), and the expression of HCoV-229 E nucleic acid was 9.47×10~5 and 9.47×10~6 copies/mL, respectively. Chaiyin Particles has a better effect on the mouse model with human coronavirus pneumonia with pestilence attacking the lung syndrome, and could play a role by enhancing immunity, and reducing inflammatory factor expression.
Animals
;
Coronavirus 229E, Human
;
Coronavirus Infections
;
immunology
;
therapy
;
Drugs, Chinese Herbal
;
therapeutic use
;
Humans
;
Lung
;
immunology
;
virology
;
Medicine, Chinese Traditional
;
Mice
;
Mice, Inbred BALB C
9.Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab.
Song LUO ; Lijuan YANG ; Chun WANG ; Chuanmiao LIU ; Dianming LI
Journal of Zhejiang University. Medical sciences 2020;49(2):227-231
OBJECTIVE:
To observe the clinical effect of plasma exchange and tocilizumab in treatment of patients with severe coronavirus disease 2019 (COVID-19).
METHODS:
Six patients with severe COVID-19 admitted in First Affiliated Hospital of Bengbu Medical College from January 25 to February 25, 2020. Three patients were treated with plasma exchange and three patients were treated with tocilizumab. The effect on excessive inflammatory reaction of plasma exchange and tocilizumab was observed.
RESULTS:
The C-reactive protein (CRP) and IL-6 levels were significantly decreased and the lymphocyte and prothrombin time were improved in 3 patients after treatment with plasma exchange; while inflammation level was not significantly decreased, and lymphocyte and prothrombin time did not improve in 3 patients treated with tocilizumab.
CONCLUSIONS
For severe COVID-19 patients with strong inflammatory reaction, plasma exchange may be preferred.
Antibodies, Monoclonal, Humanized
;
administration & dosage
;
Betacoronavirus
;
isolation & purification
;
Coronavirus Infections
;
blood
;
immunology
;
therapy
;
Cytokine Release Syndrome
;
therapy
;
Humans
;
Pandemics
;
Plasma Exchange
;
standards
;
Pneumonia, Viral
;
blood
;
immunology
;
therapy
;
Prothrombin Time
;
Treatment Outcome
10.Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids.
Sheng ZHAGN ; Danping LI ; Huazhong CHEN ; Dan ZHENG ; Yiping ZHOU ; Baoguo CHEN ; Weiwu SHI ; Ronghai LIN
Journal of Zhejiang University. Medical sciences 2020;49(2):220-226
OBJECTIVE:
To investigate the effect of corticosteroids therapy on the inflammatory response in a critically ill coronavirus disease 2019 (COVID-19) patient.
METHODS:
A 55-year old female patient with critical ill COVID-19 was admitted in Taizhou Hospital on January 19, 2020. The patient was treated with methylprednisolone 80 mg on the 2nd day after admission. Thereafter, the dose was adjusted in a timely manner and the therapy lasted for 13 days. The peripheral lymphocyte subsets (CD3T, CD4 T, CD8 T, NK cells, B cells), as well as serum levels of lymphocyte factors (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ) were dynamically monitored.
RESULTS:
On D1 of admission, the numbers of peripheral blood CD3 T, CD4 T, CD8 T, and NK cells were significantly lower than the normal range. With the improvement of the disease, the numbers of CD3 T, CD8 T and CD4 T cells gradually recovered and showed a linear growth trend (linear fitting equation: =18.59+109.4, <0.05). On D2 of admission, the patient's IL-6 and IL-10 levels were significantly higher than normal values, IFN-γ was at a normal high value, and then rapidly decreased; IL-2, IL-4, and TNF-α were all in the normal range. On the D6 and D7, the IL-6 and IL-10 decreased to the normal range for the first time. On the D18, the sputum virus nucleic acid test was negative for the first time, and the fecal virus nucleic acid test was still positive; on the D20 the sputum and fecal virus nucleic acid test were both negative. On D34, the patient recovered and was discharged. At the discharge the muscle strength score of the patient was 44 and the daily life ability evaluation was 90.
CONCLUSIONS
In the absence of effective antiviral drugs, early use of appropriate doses of corticosteroids in critically ill patient with COVID-19 can quickly alleviate inflammatory response and improve clinical symptoms, however, it may reduce the number of T cells, and to adjust the dose in time is necessary.
Betacoronavirus
;
isolation & purification
;
Cell Count
;
Coronavirus Infections
;
diagnosis
;
drug therapy
;
immunology
;
physiopathology
;
Critical Illness
;
Cytokines
;
blood
;
Female
;
Humans
;
Methylprednisolone
;
administration & dosage
;
adverse effects
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
drug therapy
;
immunology
;
physiopathology
;
T-Lymphocyte Subsets
;
drug effects
;
Treatment Outcome

Result Analysis
Print
Save
E-mail