1.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
2.Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2.
Kai WANG ; Duanfang CAO ; Lanlan LIU ; Xiaoyi FAN ; Yihuan LIN ; Wenting HE ; Yunze ZHAI ; Pingyong XU ; Xiyun YAN ; Haikun WANG ; Xinzheng ZHANG ; Pengyuan YANG
Frontiers of Medicine 2025;19(3):493-506
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Single-Domain Antibodies/immunology*
;
Spike Glycoprotein, Coronavirus/metabolism*
;
SARS-CoV-2/immunology*
;
Animals
;
Humans
;
Antibodies, Neutralizing/immunology*
;
Camelus
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Angiotensin-Converting Enzyme 2
3.Design and functional validation of a chimeric E3 ubiquitin ligase targeting the spike protein S1 subunit of SARS-CoV-2.
Yan DAI ; Jiayu LIN ; Xiaoya ZHANG ; Haorui LU ; Lang RAO
Chinese Journal of Biotechnology 2024;40(11):4071-4083
The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred via the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1's half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
HEK293 Cells
;
Ubiquitination
;
Spike Glycoprotein, Coronavirus/genetics*
;
SARS-CoV-2/metabolism*
;
Recombinant Fusion Proteins/metabolism*
;
Proteasome Endopeptidase Complex/genetics*
;
COVID-19/metabolism*
;
Angiotensin-Converting Enzyme 2/genetics*
4.Screening and identification of host proteins interacting with the non-structural protein 15 (Nsp15) of porcine epidemic diarrhea virus.
Jinlei SUN ; Ruiming YU ; Liping ZHANG ; Zhongwang ZHANG ; Yonglu WANG ; Li PAN ; Quanwei ZHANG ; Xinsheng LIU
Chinese Journal of Biotechnology 2024;40(12):4533-4545
To screen and identify the key host proteins interacting with the non-structural protein 15 (Nsp15) of porcine epidemic diarrhea virus (PEDV). The IP/pull-down assay and mass spectrometry were employed to screen and identify the host proteins interacting with Nsp15. The interaction between the host protein and Nsp15 was studied by co-immunoprecipitation and laser scanning confocal microscopy. Finally, Western blotting and RT-qPCR were employed to examine the interaction between SLC25a3 and PEDV. The recombinant eukaryotic expression vector pcDNA3.1(+)-Flag-Nsp15 was successfully constructed, and the host protein SLC25a3 interacting with PEDV Nsp15 was screened out. An interaction existed between SLC25a3 and Nsp15, and SLC25a3 significantly inhibited PEDV replication in a dose-dependent manner. SLC25a3 inhibits PEDV replication. The results of this study provide a basis for deciphering the role and mechanism of SLC25a3 in the host immune response to PEDV infection.
Porcine epidemic diarrhea virus/genetics*
;
Viral Nonstructural Proteins/metabolism*
;
Animals
;
Swine
;
Virus Replication
;
Coronavirus Infections/veterinary*
;
Swine Diseases/metabolism*
5.A Chinese Herb Prescription "Fang-gan Decoction" Protects Against Damage to Lung and Colon Epithelial Cells Caused by the SARS-CoV-2 Spike Protein by Regulating the TGF-β/Smad2/3 and NF-κB Pathways.
Chao HUANG ; Hao-Sheng LIU ; Bing-Jun LIANG ; Sheng-Rong LIAO ; Wei-Zeng SHEN
Chinese Medical Sciences Journal 2023;38(3):206-217
Objective To explore the effects and mechanisms of a traditional Chinese medicine (TCM) prescription, "Fang-gan Decoction" (FGD), in protecting against SARS-CoV-2 spike protein-induced lung and intestinal injuries in vitro and in vivo.Methods Female BALB/c mice and three cell lines pretreated with FGD were stimulated with recombinant SARS-CoV-2 spike protein (spike protein). Hematoxylin-eosin (HE) staining and pathologic scoring of tissues, cell permeability and viability, and angiotensin-converting enzyme 2 (ACE2) expression in the lung and colon were detected. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of inflammatory factors in serum and cell supernatant. The expression of NF-κB p65, p-NF-κB p65, p-IκBα, p-Smad2/3, TGF-β1, Caspase3, and Bcl-2 was evaluated by Western blotting.Results FGD protected against the damage to the lung and colon caused by the spike protein in vivo and in vitro according to the pathologic score and cell permeability and viability (P<0.05). FGD up-regulated ACE2 expression, which was reduced by the spike protein in the lung and colon, significantly improved the deregulation of inflammatory markers caused by the spike protein, and regulated the activity of TGF-β/Smads and NF-κB signaling.Conclusion Traditional Chinese medicine has a protective effect on lung and intestinal tissue injury stimulated by the spike protein through possible regulatory functions of the NF-κB and TGF-β1/Smad pathways with tissue type specificity.
Mice
;
Animals
;
Female
;
Humans
;
NF-kappa B/metabolism*
;
Spike Glycoprotein, Coronavirus/pharmacology*
;
Transforming Growth Factor beta1/metabolism*
;
Angiotensin-Converting Enzyme 2/pharmacology*
;
COVID-19
;
SARS-CoV-2/metabolism*
;
Lung
;
Antineoplastic Agents
;
Transforming Growth Factor beta/pharmacology*
;
Epithelial Cells/metabolism*
;
Colon
6.Glycosylation, glycan receptors recognition of SARS-CoV-2 and discoveries of glycan inhibitors against SARS-CoV-2.
Weiyan YU ; Yueqiang XU ; Jianjun LI ; Zhimin LI ; Qi WANG ; Yuguang DU
Chinese Journal of Biotechnology 2022;38(9):3157-3172
COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.
Antibodies, Neutralizing
;
Glycosylation
;
Heparin
;
Heparitin Sulfate
;
Humans
;
Polysaccharides/chemistry*
;
Receptors, Mitogen/metabolism*
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus/metabolism*
;
COVID-19 Drug Treatment
7.SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies: a review.
Yulei CHEN ; Jinjin LIN ; Peiyi ZHENG ; Minjie CAO ; Tengchuan JIN
Chinese Journal of Biotechnology 2022;38(9):3173-3193
Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.
Angiotensin-Converting Enzyme 2
;
Antibodies, Monoclonal
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Humans
;
Peptidyl-Dipeptidase A/metabolism*
;
Protein Binding
;
SARS-CoV-2
;
Single-Domain Antibodies
;
Spike Glycoprotein, Coronavirus/metabolism*
8.Bioactive compounds of Jingfang Granules against SARS-CoV-2 virus proteases 3CLpro and PLpro.
Zhan Peng SHANG ; Yang YI ; Rong YU ; Jing Jing FAN ; Yi Xi HUANG ; Xue QIAO ; Min YE
Journal of Peking University(Health Sciences) 2022;54(5):907-919
OBJECTIVE:
Jingfang Granules have been recommended for the prevention and treatment of corona virus disease 2019 (COVID-19). Through chemical analysis and bioactivity evaluation, this study aims to elucidate the potential effective components of Jingfang Granules.
METHODS:
The inhibitory acti-vities of Jingfang Granules extract against 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro), spike protein receptor-binding domain (S-RBD) and human cyclooxygenase-2 (COX-2) were evaluated using enzyme assay. The antitussive effects were evaluated using the classical ammonia-induced cough model. The chemical constituents of Jingfang Granules were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC/MS). The 3CLpro and PLpro inhibitory activities of the major compounds were determined by enzyme assay, molecular docking, and site-directed mutagenesis.
RESULTS:
Jingfang Granules exhibited 3CLpro and PLpro inhibitory activities, as well as COX-2 inhibitory and antitussive activities. By investigating the MS/MS behaviors of reference standards, a total of fifty-six compounds were characterized in Jingfang Granules. Sixteen of them were unambiguously identified by comparing with reference standards. The contents of the 16 major compounds were also determined, and their total contents were 2 498.8 μg/g. Naringin, nodakenin and neohesperidin were three dominating compounds in Jingfang Granules, and their contents were 688.8, 596.4 and 578.7 μg/g, respectively. In addition, neohesperidin and naringin exhibited PLpro inhibitory activities, and the inhibition rates at 8 μmol/L were 53.5% and 46.1%, respectively. Prim-O-glucosylcimifugin showed significant inhibitory activities against 3CLpro and PLpro, and the inhibitory rates at 8 μmol/L were 76.8% and 78.2%, respectively. Molecular docking indicated that hydrogen bonds could be formed between prim-O-glucosylcimifugin and amino acid residues H163, E166, Q192, T190 of 3CLpro (binding energy, -7.7 kcal/mol) and K157, D164, R166, E167, T301 of PLpro(-7.3 kcal/mol), respectively. Site-directed mutagenesis indicated amino acid residue K157 was a key active site for the interaction between prim-O-glucosylcimifugin and PLpro.
CONCLUSION
Prim-O-glucosylcimifugin, neohesperidin, and naringin as the major compounds from Jingfang Granules could inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus proteases 3CLpro and PLpro. The results are valuable for rational clinical use of Jingfang Granules.
Amino Acids
;
Ammonia
;
Antitussive Agents
;
COVID-19
;
Chymases
;
Coronavirus 3C Proteases
;
Cyclooxygenase 2
;
Cyclooxygenase 2 Inhibitors
;
Cysteine Endopeptidases/metabolism*
;
Humans
;
Molecular Docking Simulation
;
Papain
;
Peptide Hydrolases
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus
;
Tandem Mass Spectrometry
9.Pan-coronavirus fusion inhibitors as the hope for today and tomorrow.
Xinling WANG ; Shuai XIA ; Yun ZHU ; Lu LU ; Shibo JIANG
Protein & Cell 2021;12(2):84-88
10.High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors.
Yao ZHAO ; Xiaoyu DU ; Yinkai DUAN ; Xiaoyan PAN ; Yifang SUN ; Tian YOU ; Lin HAN ; Zhenming JIN ; Weijuan SHANG ; Jing YU ; Hangtian GUO ; Qianying LIU ; Yan WU ; Chao PENG ; Jun WANG ; Chenghao ZHU ; Xiuna YANG ; Kailin YANG ; Ying LEI ; Luke W GUDDAT ; Wenqing XU ; Gengfu XIAO ; Lei SUN ; Leike ZHANG ; Zihe RAO ; Haitao YANG
Protein & Cell 2021;12(11):877-888
A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M
Antiviral Agents/therapeutic use*
;
Binding Sites
;
COVID-19/virology*
;
Coronavirus Papain-Like Proteases/metabolism*
;
Crystallography, X-Ray
;
Drug Evaluation, Preclinical
;
Drug Repositioning
;
High-Throughput Screening Assays/methods*
;
Humans
;
Imidazoles/therapeutic use*
;
Inhibitory Concentration 50
;
Molecular Dynamics Simulation
;
Mutagenesis, Site-Directed
;
Naphthoquinones/therapeutic use*
;
Protease Inhibitors/therapeutic use*
;
Protein Structure, Tertiary
;
Recombinant Proteins/isolation & purification*
;
SARS-CoV-2/isolation & purification*

Result Analysis
Print
Save
E-mail