1.Research on multi-scale convolutional neural network hand muscle strength prediction model improved based on convolutional attention module.
Yihao DU ; Mengyu SUN ; Jingjin LI ; Xiaoran WANG ; Tianfu CAO
Journal of Biomedical Engineering 2025;42(1):90-95
In order to realize the quantitative assessment of muscle strength in hand function rehabilitation and then formulate scientific and effective rehabilitation training strategies, this paper constructs a multi-scale convolutional neural network (MSCNN) - convolutional block attention module (CBAM) - bidirectional long short-term memory network (BiLSTM) muscle strength prediction model to fully explore the spatial and temporal features of the data and simultaneously suppress useless features, and finally achieve the improvement of the accuracy of the muscle strength prediction model. To verify the effectiveness of the model proposed in this paper, the model in this paper is compared with traditional models such as support vector machine (SVM), random forest (RF), convolutional neural network (CNN), CNN - squeeze excitation network (SENet), MSCNN-CBAM and MSCNN-BiLSTM, and the effect of muscle strength prediction by each model is investigated when the hand force application changes from 40% of the maximum voluntary contraction force (MVC) to 60% of the MVC. The research results show that as the hand force application increases, the effect of the muscle strength prediction model becomes worse. Then the ablation experiment is used to analyze the influence degree of each module on the muscle strength prediction result, and it is found that the CBAM module plays a key role in the model. Therefore, by using the model in this article, the accuracy of muscle strength prediction can be effectively improved, and the characteristics and laws of hand muscle activities can be deeply understood, providing assistance for further exploring the mechanism of hand functions .
Neural Networks, Computer
;
Humans
;
Hand Strength/physiology*
;
Support Vector Machine
;
Muscle Strength/physiology*
;
Hand/physiology*
;
Convolutional Neural Networks
2.Research on fatigue recognition based on graph convolutional neural network and electroencephalogram signals.
Song LI ; Yunfa FU ; Yan ZHANG ; Gong LU
Journal of Biomedical Engineering 2025;42(4):686-692
Electroencephalogram (EEG) serves as an effective indicator of detecting fatigue driving. Utilizing the open accessible Shanghai Jiao Tong University Emotion Electroencephalography Dataset (SEED-VIG), driving states are divided into three categories including awake, tired and drowsy for investigation. Given the characteristics of mutual influence and interdependence among EEG channels, as well as the consistency of the graph convolutional neural network (GCNN) structure, we designed an adjacency matrix based on the Pearson correlation coefficients of EEG signals among channels and their positional relationships. Subsequently, we developed a GCNN for recognition. The experimental results show that the average classification accuracy of driving state categories for 20 subjects, from the SEED-VIG dataset under the smooth feature of differential entropy (DE) linear dynamic system is 91.66%. Moreover, the highest classification accuracy can reach 98.87%, and the average Kappa coefficient is 0.83. This work demonstrates the reliability of this method and provides a guideline for the research field of safe driving brain computer interface.
Humans
;
Electroencephalography/methods*
;
Neural Networks, Computer
;
Fatigue/physiopathology*
;
Automobile Driving
;
Brain-Computer Interfaces
;
Signal Processing, Computer-Assisted
;
Convolutional Neural Networks
3.Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.
Yiwei GONG ; Zheng ZHANG ; Yuanzhi YANG ; Shuo ZHANG ; Ruifeng ZHENG ; Xin LI ; Xiaoyun QIU ; Yang ZHENG ; Shuang WANG ; Wenyu LIU ; Fan FEI ; Heming CHENG ; Yi WANG ; Dong ZHOU ; Kejie HUANG ; Zhong CHEN ; Cenglin XU
Neuroscience Bulletin 2025;41(5):790-804
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis. However, it still lacks effective predictors and approaches. Here, a classical model of pharmacoresistant temporal lobe epilepsy (TLE) was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats. Ictal electroencephalograms (EEGs) recorded before phenytoin treatment were analyzed. Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats, a convolutional neural network predictive model was constructed to predict pharmacoresistance, and achieved 78% prediction accuracy. We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power, which was verified in seizure EEGs from pharmacoresistant TLE patients. Prospectively, therapies targeting the subiculum in those predicted as "pharmacoresistant" individual rats significantly reduced the subsequent occurrence of pharmacoresistance. These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model. This may be of translational importance for the precise management of pharmacoresistant TLE.
Epilepsy, Temporal Lobe/diagnosis*
;
Animals
;
Drug Resistant Epilepsy/drug therapy*
;
Electroencephalography/methods*
;
Rats
;
Anticonvulsants/pharmacology*
;
Neural Networks, Computer
;
Male
;
Humans
;
Phenytoin/pharmacology*
;
Adult
;
Disease Models, Animal
;
Female
;
Rats, Sprague-Dawley
;
Young Adult
;
Convolutional Neural Networks
4.Research on emotion recognition in electroencephalogram based on independent component analysis-recurrence plot and improved EfficientNet.
Guohong FENG ; Xiao ZHENG ; Bin ZHANG ; Hongen WANG
Journal of Biomedical Engineering 2024;41(6):1103-1109
To accurately capture and effectively integrate the spatiotemporal features of electroencephalogram (EEG) signals for the purpose of improving the accuracy of EEG-based emotion recognition, this paper proposes a new method combining independent component analysis-recurrence plot with an improved EfficientNet version 2 (EfficientNetV2). First, independent component analysis is used to extract independent components containing spatial information from key channels of the EEG signals. These components are then converted into two-dimensional images using recurrence plot to better extract emotional features from the temporal information. Finally, the two-dimensional images are input into an improved EfficientNetV2, which incorporates a global attention mechanism and a triplet attention mechanism, and the emotion classification is output by the fully connected layer. To validate the effectiveness of the proposed method, this study conducts comparative experiments, channel selection experiments and ablation experiments based on the Shanghai Jiao Tong University Emotion Electroencephalogram Dataset (SEED). The results demonstrate that the average recognition accuracy of our method is 96.77%, which is significantly superior to existing methods, offering a novel perspective for research on EEG-based emotion recognition.
Electroencephalography/methods*
;
Emotions
;
Humans
;
Signal Processing, Computer-Assisted
;
Principal Component Analysis
;
Algorithms
;
Convolutional Neural Networks
5.Three-dimensional convolutional neural network based on spatial-spectral feature pictures learning for decoding motor imagery electroencephalography signal.
Xuejian WU ; Yaqi CHU ; Xingang ZHAO ; Yiwen ZHAO
Journal of Biomedical Engineering 2024;41(6):1145-1152
The brain-computer interface (BCI) based on motor imagery electroencephalography (EEG) shows great potential in neurorehabilitation due to its non-invasive nature and ease of use. However, motor imagery EEG signals have low signal-to-noise ratios and spatiotemporal resolutions, leading to low decoding recognition rates with traditional neural networks. To address this, this paper proposed a three-dimensional (3D) convolutional neural network (CNN) method that learns spatial-frequency feature maps, using Welch method to calculate the power spectrum of EEG frequency bands, converted time-series EEG into a brain topographical map with spatial-frequency information. A 3D network with one-dimensional and two-dimensional convolutional layers was designed to effectively learn these features. Comparative experiments demonstrated that the average decoding recognition rate reached 86.89%, outperforming traditional methods and validating the effectiveness of this approach in motor imagery EEG decoding.
Electroencephalography/methods*
;
Humans
;
Brain-Computer Interfaces
;
Neural Networks, Computer
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Brain/physiology*
;
Convolutional Neural Networks
6.Gesture accuracy recognition based on grayscale image of surface electromyogram signal and multi-view convolutional neural network.
Qingzheng CHEN ; Qing TAO ; Xiaodong ZHANG ; Xuezheng HU ; Tianle ZHANG
Journal of Biomedical Engineering 2024;41(6):1153-1160
This study aims to address the limitations in gesture recognition caused by the susceptibility of temporal and frequency domain feature extraction from surface electromyography signals, as well as the low recognition rates of conventional classifiers. A novel gesture recognition approach was proposed, which transformed surface electromyography signals into grayscale images and employed convolutional neural networks as classifiers. The method began by segmenting the active portions of the surface electromyography signals using an energy threshold approach. Temporal voltage values were then processed through linear scaling and power transformations to generate grayscale images for convolutional neural network input. Subsequently, a multi-view convolutional neural network model was constructed, utilizing asymmetric convolutional kernels of sizes 1 × n and 3 × n within the same layer to enhance the representation capability of surface electromyography signals. Experimental results showed that the proposed method achieved recognition accuracies of 98.11% for 13 gestures and 98.75% for 12 multi-finger movements, significantly outperforming existing machine learning approaches. The proposed gesture recognition method, based on surface electromyography grayscale images and multi-view convolutional neural networks, demonstrates simplicity and efficiency, substantially improving recognition accuracy and exhibiting strong potential for practical applications.
Electromyography/methods*
;
Neural Networks, Computer
;
Humans
;
Gestures
;
Signal Processing, Computer-Assisted
;
Machine Learning
;
Pattern Recognition, Automated/methods*
;
Algorithms
;
Convolutional Neural Networks
7.Image reconstruction for cerebral hemorrhage based on improved densely-connected fully convolutional neural network.
Yanyan SHI ; Luanjun WANG ; Yating LI ; Meng WANG ; Bin YANG ; Feng FU
Journal of Biomedical Engineering 2024;41(6):1185-1194
Cerebral hemorrhage is a serious cerebrovascular disease with high morbidity and high mortality, for which timely diagnosis and treatment are crucial. Electrical impedance tomography (EIT) is a functional imaging technique which is able to detect abnormal changes of electrical property of the brain tissue at the early stage of the disease. However, irregular multi-layer structure and different conductivity properties of each layer affect image reconstruction of the brain EIT, resulting in low reconstruction quality. To solve this problem, an image reconstruction method based on an improved densely-connected fully convolutional neural network is proposed in this paper. On the basis of constructing a three-layer cerebral model that approximates the real structure of the human head, the nonlinear mapping between the boundary voltage and the conductivity change is determined by network training, which avoids the error caused by the traditional sensitivity matrix method used for solving inverse problem. The proposed method is also evaluated under the conditions with or without noise, as well as with brain model change. The numerical simulation and phantom experimental results show that conductivity distribution of cerebral hemorrhage can be accurately reconstructed with the proposed method, providing a reliable basis for the diagnosis and treatment of cerebral hemorrhage. Also, it promotes the application of EIT in the diagnosis of brain diseases.
Humans
;
Cerebral Hemorrhage/diagnostic imaging*
;
Neural Networks, Computer
;
Electric Impedance
;
Image Processing, Computer-Assisted/methods*
;
Tomography/methods*
;
Brain/diagnostic imaging*
;
Phantoms, Imaging
;
Convolutional Neural Networks
8.Coronary artery segmentation based on Transformer and convolutional neural networks dual parallel branch encoder neural network.
Dan PAN ; Genqiang LUO ; An ZENG
Journal of Biomedical Engineering 2024;41(6):1195-1203
Manual segmentation of coronary arteries in computed tomography angiography (CTA) images is inefficient, and existing deep learning segmentation models often exhibit low accuracy on coronary artery images. Inspired by the Transformer architecture, this paper proposes a novel segmentation model, the double parallel encoder u-net with transformers (DUNETR). This network employed a dual-encoder design integrating Transformers and convolutional neural networks (CNNs). The Transformer encoder transformed three-dimensional (3D) coronary artery data into a one-dimensional (1D) sequential problem, effectively capturing global multi-scale feature information. Meanwhile, the CNN encoder extracted local features of the 3D coronary arteries. The complementary features extracted by the two encoders were fused through the noise reduction feature fusion (NRFF) module and passed to the decoder. Experimental results on a public dataset demonstrated that the proposed DUNETR model achieved a Dice similarity coefficient of 81.19% and a recall rate of 80.18%, representing improvements of 0.49% and 0.46%, respectively, over the next best model in comparative experiments. These results surpassed those of other conventional deep learning methods. The integration of Transformers and CNNs as dual encoders enables the extraction of rich feature information, significantly enhancing the effectiveness of 3D coronary artery segmentation. Additionally, this model provides a novel approach for segmenting other vascular structures.
Neural Networks, Computer
;
Humans
;
Coronary Vessels/diagnostic imaging*
;
Computed Tomography Angiography/methods*
;
Deep Learning
;
Coronary Angiography/methods*
;
Imaging, Three-Dimensional
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
;
Convolutional Neural Networks

Result Analysis
Print
Save
E-mail