1.Effect of moxibustion at "Shenque" (CV8) on the expression of BDNF and c-fos in the urinary control brain regions of rats with neurogenic bladder after spinal cord injury.
Han YU ; Yuanbo FU ; Huilin LIU ; Yuzhuo ZHANG ; Yutong NI ; Qingdai LI ; Yi XU
Chinese Acupuncture & Moxibustion 2025;45(5):638-645
OBJECTIVE:
To observe the effects of moxibustion at "Shenque" (CV8) on urodynamics and the expression of brain-derived neurotrophic factor (BDNF) and immediate early gene (c-fos) in pontine micturition center (PMC), periaqueductal gray (PAG), medial prefrontal cortex (mPFC) of neurogenic bladder (NB) rats after spinal cord injury.
METHODS:
Twenty-four SPF female SD rats were randomly divided into a sham-operation group (6 rats) and a modeling group (18 rats). In the modeling group, T9 complete spinal cord transection method was used to establish a neurogenic detrusor overactivity model, and the 12 rats with successful modeling were randomized into a model group and a moxibustion group, with 6 rats in each group. The rats in the moxibustion group were treated with ginger/salt-insulated moxibustion at "Shenque" (CV8), and 4 consecutive moxa cones were delivered in one intervention. Moxibustion was operated once daily and for 14 days. After intervention completion, the urodynamic indexes of rats in each group were detected. Fluorescence quantitative PCR was used to detect the mRNA expression of BDNF and c-fos in PMC, PAG and mPFC in rats. Western blot was used to detect the protein expression of BDNF and c-fos in PMC, PAG and mPFC.
RESULTS:
The rats in the sham-operation group did not show phasic detrusor contraction during bladder filling. Compared with the model group, the frequency and amplitude of the phasic detrusor contraction were reduced 5 min before urine leakage in the rats of the moxibustion group (P<0.05), and the duration of the first phasic detrusor contraction during bladder filling was prolonged (P<0.05). Compared with the sham-operation group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC increased in the model group (P<0.05). Compared with the model group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC decreased in the moxibustion group (P<0.05).
CONCLUSION
Moxibustion at "Shenque" (CV8) can improve the phasic contraction during bladder filling in NB rats after spinal cord injury, possibly by down-regulating the mRNA and protein expression of BDNF and c-fos in PMC, PAG, and mPFC.
Animals
;
Moxibustion
;
Female
;
Rats
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Rats, Sprague-Dawley
;
Acupuncture Points
;
Spinal Cord Injuries/metabolism*
;
Urinary Bladder, Neurogenic/etiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Humans
;
Urinary Bladder/physiopathology*
;
Brain/metabolism*
;
Urination
2.Acupuncture and moxibustion combined with umbilical therapy for 30 cases of anxiety and depression in patients with neurogenic bladder after spinal cord injury.
Dongli WANG ; Xueqian WANG ; Rui WANG ; Youzhi HAO ; Weiwei QIAO ; Chao LI ; Yinping ZUO
Chinese Acupuncture & Moxibustion 2025;45(7):923-926
OBJECTIVE:
To observe the clinical effect of acupuncture and moxibustion combined with umbilical therapy on anxiety and depression in patients with neurogenic bladder (NB) after spinal cord injury (SCI).
METHODS:
Thirty cases of NB after SCI with anxiety and depression were selected and treated with acupuncture and moxibustion combined with umbilical therapy. Acupuncture was applied at Baihui (GV20), Yintang (GV24+), Sanyinjiao (SP6), Shenmen (HT7), Hegu (LI4), Taichong (LR3), once a day, continuous treatment for 4 weeks. Ginger moxibustion was applied at the bladder meridian of foot taiyang and governor vessel, once a day, continuous treatment for 4 weeks. In treatment of umbilical therapy, Chaihu (Radix Bupleuri), Yujin (Radix Curcumae), Rougui (Cortex Cinnamomi) were ground and mixed with the same amount of honey, put into the application, and the application was placed on the navel after filling the navel with fine salt, once a day for 4 weeks. Hamilton anxiety scale (HAMA) score, Hamilton depression scale (HAMD) score, urodynamic indexes (maximum urinary flow rate [Qmax], maximum detrusor pressure [Pdet-max], residual urine volume [RUV]), neurogenic bladder symptom score (NBSS), urinary symptom distress scale (USDS) score were compared before and after treatment, and the clinical efficacy was evaluated.
RESULTS:
After treatment, the scores of HAMA, HAMD, NBSS, USDS and RUVwere lower than those before treatment (P<0.05), and Qmax and Pdet-max were higher than those before treatment (P<0.05). The total effective rate was 93.3 (28/30).
CONCLUSION
Acupuncture and moxibustion combined with umbilical therapy can effectively relieve anxiety and depression symptoms, improve urination disorders in patients with NB after SCI.
Humans
;
Moxibustion
;
Male
;
Female
;
Adult
;
Middle Aged
;
Acupuncture Therapy
;
Spinal Cord Injuries/psychology*
;
Depression/etiology*
;
Anxiety/etiology*
;
Urinary Bladder, Neurogenic/etiology*
;
Young Adult
;
Aged
;
Combined Modality Therapy
;
Acupuncture Points
3.Effect of ultrasound-guided foraminal electroacupuncture on spinal cord injury based on the Wnt/β-catenin signaling pathway.
Weixian WU ; Bin CHEN ; Jing LIU ; Li WANG ; Feizhen CHEN ; Yanling WU
Chinese Acupuncture & Moxibustion 2025;45(10):1442-1449
OBJECTIVE:
To observe the effects of ultrasound-guided foraminal electroacupuncture on neuronal apoptosis and motor function in rats with spinal cord injury (SCI), and to explore the potential underlying mechanisms.
METHODS:
Thirty-six SPF-grade Sprague-Dawley rats were randomly assigned to a sham operation group, a model group, and an ultrasound-guilded electroacupuncture group (electroacupuncture group), with 12 rats in each group. In the sham operation group, the spinal cord was exposed and then the incision was sutured without contusion. In the other two groups, SCI models were established using a modified Allen's impact method. On days 1, 3, 7, and 14 after modeling, the electroacupuncture group received electroacupuncture intervention at the T9/T10 and T10/T11 intervertebral foramen under ultrasound guidance, avoiding spinal cord injury. Stimulation parameters were dense-disperse wave at 2 Hz/100 Hz and 1-2 mA for each session. Following interventions on days 1, 3, 7, and 14, the Basso-Beattie-Bresnahan (BBB) score was assessed; the inclined plane test was used to assess hindlimb grip strength in rats. After the intervention, HE staining was used to observe spinal cord morphology; TUNEL staining was used to detect neuronal apoptosis; ELISA was used to measure the serum levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α); Western blot was used to analyze the protein expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN in spinal tissue; quantitative real-time PCR was used to detect the mRNA expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN.
RESULTS:
Compared with the sham operation group, the model group showed significantly reduced BBB scores (P<0.05), and reduced inclined plane angles (P<0.05) at all time points. Compared with the model group, the electroacupuncture group exhibited increased BBB scores on days 3, 7, and 14 (P<0.05), and higher inclined plane angles on days 1, 3, 7, and 14 (P<0.05). Compared with the sham operation group, the model group showed disorganized spinal cord structure with increased inflammatory cells and necrotic neurons, higher number of apoptotic neurons in spinal tissue (P<0.05), elevated serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, c-Myc, and Bax (P<0.05), and decreased protein and mRNA expression of Bcl-2 and NeuN in spinal tissue (P<0.05). Compared with the model group, the electroacupuncture group had fewer inflammatory cells and apoptotic neurons in spinal tissue (P<0.05), reduced serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, Bcl-2, and NeuN (P<0.05), and decreased protein and mRNA expression of c-Myc and Bax in spinal tissue (P<0.05).
CONCLUSION
Ultrasound-guided foraminal electroacupuncture could improve motor function in rats with SCI, potentially by regulating the expression of molecules related to the Wnt-4/β-catenin signaling pathway to inhibit neuronal apoptosis and inflammatory responses.
Animals
;
Electroacupuncture/methods*
;
Spinal Cord Injuries/physiopathology*
;
Rats, Sprague-Dawley
;
Rats
;
Wnt Signaling Pathway
;
Male
;
Humans
;
Female
;
beta Catenin/metabolism*
;
Apoptosis
;
Ultrasonography
;
Tumor Necrosis Factor-alpha/genetics*
;
Spinal Cord/metabolism*
4.Automatic brain segmentation in cognitive impairment: Validation of AI-based AQUA software in the Southeast Asian BIOCIS cohort.
Ashwati VIPIN ; Rasyiqah BINTE SHAIK MOHAMED SALIM ; Regina Ey KIM ; Minho LEE ; Hye Weon KIM ; ZunHyan RIEU ; Nagaendran KANDIAH
Annals of the Academy of Medicine, Singapore 2025;54(8):467-475
INTRODUCTION:
Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc., Seoul, Republic of Korea) segmentation software in a Southeast Asian community-based cohort with normal cognition, mild cognitive impairment (MCI) and dementia.
METHOD:
Study participants belonged to the community-based Biomarker and Cognition Study in Singapore. Participants aged between 30 and 95 years, having cognitive concerns, with no diagnosis of major psychiatric, neurological or systemic disorders who were recruited consecutively between April 2022 and July 2023 were included. Participants underwent neuropsychological assessments and structural MRI, and were classified as cognitively normal, with MCI or with dementia. MRI pre-processing using automated pipelines, along with human-based visual ratings, were compared against AI-based automated AQUA output. Default mode network grey matter (GM) volumes were compared between cognitively normal, MCI and dementia groups.
RESULTS:
A total of 90 participants (mean age at visit was 63.32±10.96 years) were included in the study (30 cognitively normal, 40 MCI and 20 dementia). Non-parametric Spearman correlation analysis indicated that AQUA-based and human-based visual ratings were correlated with total (ρ=0.66; P<0.0001), periventricular (ρ=0.50; P<0.0001) and deep (ρ=0.57; P<0.0001) white matter hyperintensities (WMH). Additionally, volumetric WMH obtained from AQUA and automated pipelines was also strongly correlated (ρ=0.84; P<0.0001) and these correlations remained after controlling for age at visit, sex and diagnosis. Linear regression analyses illustrated significantly different AQUA-derived default mode network GM volumes between cognitively normal, MCI and dementia groups. Dementia participants had significant atrophy in the posterior cingulate cortex compared to cognitively normal participants (P=0.021; 95% confidence interval [CI] -1.25 to -0.08) and in the hippocampus compared to cognitively normal (P=0.0049; 95% CI -1.05 to -0.16) and MCI participants (P=0.0036; 95% CI -1.02 to -0.17).
CONCLUSION
Our findings demonstrate high concordance between human-based visual ratings and AQUA-based ratings of WMH. Additionally, the AQUA GM segmentation pipeline showed good differentiation in key regions between cognitively normal, MCI and dementia participants. Based on these findings, the automated AQUA software could aid clinicians in examining MRI scans of patients with cognitive impairment.
Humans
;
Cognitive Dysfunction/pathology*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Middle Aged
;
Female
;
Aged
;
Artificial Intelligence
;
Software
;
Dementia/diagnostic imaging*
;
Aged, 80 and over
;
Adult
;
Singapore
;
Neuropsychological Tests
;
Brain/pathology*
;
Cohort Studies
;
Gray Matter/pathology*
;
Southeast Asian People
5.Illness duration-related developmental trajectory of progressive cerebral gray matter changes in schizophrenia.
Xin CHANG ; Zhihuan YANG ; Yingjie TANG ; Xiaoying SUN ; Cheng LUO ; Dezhong YAO
Journal of Biomedical Engineering 2025;42(2):293-299
In different stages of schizophrenia (SZ), alterations in gray matter volume (GMV) of patients are normally regulated by various pathological mechanisms. Instead of analyzing stage-specific changes, this study employed a multivariate structural covariance model and sliding-window approach to investigate the illness duration-related developmental trajectory of GMV in SZ. The trajectory is defined as a sequence of brain regions activated by illness duration, represented as a sparsely directed matrix. By applying this approach to structural magnetic resonance imaging data from 145 patients with SZ, we observed a continuous developmental trajectory of GMV from cortical to subcortical regions, with an average change occurring every 0.208 years, covering a time window of 20.176 years. The starting points were widely distributed across all networks, except for the ventral attention network. These findings provide insights into the neuropathological mechanism of SZ with a neuroprogressive model and facilitate the development of process for aided diagnosis and intervention with the starting points.
Humans
;
Schizophrenia/pathology*
;
Gray Matter/pathology*
;
Magnetic Resonance Imaging
;
Disease Progression
;
Male
;
Female
;
Brain/pathology*
;
Cerebral Cortex/pathology*
;
Adult
6.A simulation study of nerve fiber activation in the lumbar segment under kilohertz-frequency transcutaneously spinal cord stimulation.
Qi XU ; Xinru LI ; Zhixin LU ; Yongchao WU
Journal of Biomedical Engineering 2025;42(2):300-307
Clinical trials have demonstrated that kilohertz-frequency transcutaneous spinal cord stimulation (TSCS) can be used to facilitate the recovery of sensory-motor function for patients with spinal cord injury, whereas the neural mechanism of TSCS is still undetermined so that the choice of stimulation parameters is largely dependent on the clinical experience. In this paper, a finite element model of transcutaneous spinal cord stimulation was used to calculate the electric field distribution of human spinal cord segments T 12 to L 2, whereas the activation thresholds of spinal fibers were determined by using a double-cable neuron model. Then the variation of activation thresholds was obtained by varying the carrier waveform, the interphase delay, the modulating frequency, and the modulating pulse width. Compared with the sinusoidal carrier, the usage of square carrier could significantly reduce the activation threshold of dorsal root (DR) fibers. Moreover, the variation of activation thresholds was no more than 1 V due to the varied modulating frequency and decreases with the increased modulating pulse width. For a square carrier at 10 kHz modulated by rectangular pulse with the frequency of 50 Hz and the pulse width of 1 ms, the lowest activation thresholds of DR fibers and dorsal column fibers were 27.6 V and 55.8 V, respectively. An interphase delay of 5 μs was able to reduce the activation thresholds of the DR fibers to 20.1 V. The simulation results can lay a theoretical foundation on the selection of TSCS parameters in clinical trials.
Humans
;
Spinal Cord Stimulation/methods*
;
Nerve Fibers/physiology*
;
Finite Element Analysis
;
Spinal Cord/physiology*
;
Computer Simulation
;
Spinal Cord Injuries/physiopathology*
;
Lumbosacral Region
;
Lumbar Vertebrae
;
Transcutaneous Electric Nerve Stimulation/methods*
;
Models, Neurological
7.Short-term effectiveness of floating island laminectomy surgery for thoracic spinal stenosis and myelopathy caused by ossification of ligamentum flavum.
Cheng ZHONG ; Peng XIU ; Hua CHEN ; Tao LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):466-469
OBJECTIVE:
To explore short-term effectiveness of floating island laminectomy surgery in treating thoracic spinal stenosis and myelopathy caused by ossification of the ligamentum flavum.
METHODS:
A total of 31 patients with thoracic spinal stenosis and myelopathy caused by ossification of the ligamentum flavum between January 2019 and April 2022 were managed with floating island laminectomy surgery. The patients comprised 17 males and 14 females, aged between 36 and 78 years, with an average of 55.9 years. The duration of symptoms of spinal cord compression ranged from 3 to 62 months (mean, 27.2 months). The lesions affected T 1-6 in 4 cases and T 7-12 in 27 cases. The preoperative neurological function score from the modified Japanese Orthopaedic Association (mJOA) was 4.7±0.6. Surgical duration, intraoperative blood loss, and complications were recorded. The thoracic MRI was conducted to reassess the degree of spinal cord compression and decompression after operation. The mJOA score was employed to evaluate the neurological function and calculate the recovery rate at 12 months after operation.
RESULTS:
The surgical duration ranged from 122 to 325 minutes, with an average of 204.5 minutes. The intraoperative blood loss ranged from 150 to 800 mL (mean, 404.8 mL). All incisions healed by first intention after operation. All patients were followed up 12-14 months, with an average of 12.5 months. The patients' symptoms, including lower limb weakness, gait disorders, and pain, significantly improved. The mJOA scores after operation significantly increased when compared with preoperative scores ( P<0.05), gradually improving with time, with significant differences observed among 1, 3, and 6 months ( P<0.05). The recovery rate at 12 months was 69.76%±11.38%, with 10 cases exhibiting excellent neurological function and 21 cases showing good. During the procedure, there were 3 cases of dural tear and 1 case of dural defect. Postoperatively, there were 2 cases of cerebrospinal fluid leakage. No aggravated nerve damage, recurrence of ligamentum flavum ossification, or postoperative thoracic deformity occurred.
CONCLUSION
The floating island laminectomy surgery is safe for treating thoracic spinal stenosis and myelopathy caused by ossification of the ligamentum flavum, effectively preventing the exacerbation of neurological symptoms. Early improvement and recovery of neurological function are achieved.
Humans
;
Male
;
Spinal Stenosis/diagnostic imaging*
;
Female
;
Laminectomy/methods*
;
Ligamentum Flavum/pathology*
;
Middle Aged
;
Aged
;
Thoracic Vertebrae/surgery*
;
Adult
;
Decompression, Surgical/methods*
;
Treatment Outcome
;
Ossification, Heterotopic/surgery*
;
Spinal Cord Compression/etiology*
;
Spinal Cord Diseases/etiology*
;
Magnetic Resonance Imaging
8.Research progress of unilateral biportal endoscopy technology in cervical degenerative disease.
Runmin TANG ; Lixian TAN ; Guoqiang LAI ; Limin RONG ; Liangming ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):495-503
OBJECTIVE:
To review the application and progress of unilateral biportal endoscopy (UBE) technology in the treatment of cervical degenerative diseases, and to provide reference for clinical treatment decisions.
METHODS:
The literature related to UBE technology in the treatment of cervical spondylotic radiculopathy (CSR) and cervical spondylotic myelopathy (CSM) at home and abroad was extensively reviewed, and the surgical methods, indications, effectiveness, and safety were analyzed and summarized.
RESULTS:
UBE technology is effective in the treatment of CSR and CSM, and has the advantages of good surgical field, reducing the injury of the posterior structure of the cervical spine, and protecting the facet joint process, but in general, the indications are relatively narrow, limited to single-segment or adjacent double-segment lesions, and the requirements for the operator are relatively high, and the learning curve is long.
CONCLUSION
UBE technology can be applied to the treatment of CSR and CSM, but it needs to be carried out by experienced UBE surgeons for specific cases.
Humans
;
Cervical Vertebrae/surgery*
;
Endoscopy/methods*
;
Radiculopathy/surgery*
;
Spondylosis/surgery*
;
Decompression, Surgical/methods*
;
Spinal Cord Diseases/surgery*
;
Treatment Outcome
9.Effect of removing microglia from spinal cord on nerve repair after spinal cord injury in mice.
Qi JIANG ; Chao QI ; Yuerong SUN ; Shiyuan XUE ; Xinyi WEI ; Haitao FU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):754-761
OBJECTIVE:
To investigate the effects of removing microglia from spinal cord on nerve repair and functional recovery after spinal cord injury (SCI) in mice.
METHODS:
Thirty-nine 6-week-old female C57BL/6 mice were randomly divided into control group ( n=12), SCI group ( n=12), and PLX3397+SCI group ( n=15). The PLX3397+SCI group received continuous feeding of PLX3397, a colony-stimulating factor 1 receptor inhibitor, while the other two groups were fed a standard diet. After 14 days, both the SCI group and the PLX3397+SCI group were tested for ionized calcium binding adapter molecule 1 (Iba1) to confirm that the PLX3397+SCI group had completely depleted the spinal cord microglia. The SCI model was then prepared by clamping the spinal cord in both the SCI group and the PLX3397+SCI group, while the control group underwent laminectomy. Preoperatively and at 1, 3, 7, 14, 21, and 28 days postoperatively, the Basso Mouse Scale (BMS) was used to assess the hind limb function of mice in each group. At 28 days, a footprint test was conducted to observe the gait of the mice. After SCI, spinal cord tissue from the injury site was taken, and Iba1 immunofluorescence staining was performed at 7 days to observe the aggregation and proliferation of microglia in the spinal cord. HE staining was used to observe the formation of glial scars at the injury site at 28 days; glial fibrillary acidic protein (GFAP) immunofluorescence staining was applied to astrocytes to assess the extent of the injured area; neuronal nuclei antigen (NeuN) immunofluorescence staining was used to evaluate neuronal survival. And 5-hydroxytryptamine (5-HT) immunofluorescence staining was performed to assess axonal survival at 60 days.
RESULTS:
All mice survived until the end of the experiment. Immunofluorescence staining revealed that the microglia in the spinal cord of the PLX3397+SCI group decreased by more than 95% compared to the control group after 14 days of continuous feeding with PLX3397 ( P<0.05). Compared to the control group, the BMS scores in the PLX3397+SCI group and the SCI group significantly decreased at different time points after SCI ( P<0.05). Moreover, the PLX3397+SCI group showed a further decrease in BMS scores compared to the SCI group, and exhibited a dragging gait. The differences between the two groups were significant at 14, 21, and 28 days ( P<0.05). HE staining at 28 days revealed that the SCI group had formed a well-defined and dense gliotic scar, while the PLX3397+SCI group also developed a gliotic scar, but with a more blurred and loose boundary. Immunofluorescence staining revealed that the number of microglia near the injury center at 7 days increased in the SCI group than in the control group, but the difference between groups was not significant ( P>0.05). In contrast, the PLX3397+SCI group showed a significant reduction in microglia compared to both the control and SCI groups ( P<0.05). At 28 days after SCI, the area of spinal cord injury in the PLX3397+SCI group was significantly larger than that in SCI group ( P<0.05); the surviving neurons significantly reduced compared with the control group and SCI group ( P<0.05). The axonal necrosis and retraction at 60 days after SCI were more obvious.
CONCLUSION
The removal of microglia in the spinal cord aggravate the tissue damage after SCI and affecte the recovery of motor function in mice, suggesting that microglia played a neuroprotective role in SCI.
Animals
;
Spinal Cord Injuries/surgery*
;
Microglia/pathology*
;
Female
;
Mice
;
Mice, Inbred C57BL
;
Nerve Regeneration/drug effects*
;
Spinal Cord/pathology*
;
Pyrroles/administration & dosage*
;
Aminopyridines/administration & dosage*
;
Recovery of Function
;
Disease Models, Animal
;
Calcium-Binding Proteins/metabolism*
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors*
;
Microfilament Proteins/metabolism*
;
Glial Fibrillary Acidic Protein/metabolism*
10.Establishment of a canine model of vascularized allogeneic spinal cord transplantation and preliminary study on spinal cord continuity reconstruction.
Jiayang CHEN ; Rongyu LAN ; Weihua ZHANG ; Jie QIN ; Weijun HU ; Jiaxing WANG ; Xiaoping REN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1196-1202
OBJECTIVE:
To explore the construction of a canine model of vascularized allogeneic spinal cord transplantation (vASCT) and preliminarily evaluate its therapeutic efficacy for spinal cord injury (SCI).
METHODS:
Sixteen female Beagle dogs aged 8-12 months were randomly selected, with 8 dogs serving as donors for the harvesting of spinal cord tissue with a vascular pedicle [dorsal intercostal artery (DIA) at the T10 level and accompanying vein]. The remaining 8 dogs underwent a 1.5-cm-length spinal cord defect at the T10 level, followed by transplantation of the donor spinal cord tissue for repair. Polyethylene glycol (PEG) was applied to both ends to spinal cord graft; then, using a random number table method, the dogs were divided into an experimental group (n=4) and a control group (n=4). The experimental group received immunosuppressive intervention with oral tacrolimus [0.1 mg/(kg∙d)] postoperatively, while the control group received no treatment. The operation time and ischemia-reperfusion time of two groups were recorded. The recovery of hind limb function was estimated by Olby score within 2 months after operation; the motor evoked potentials (MEP) was measured through neuroelectrophysiological examination, and the spinal cord integrity was observed through MRI.
RESULTS:
There was no significant difference in the operation time and ischemia-reperfusion time between the two groups (P>0.05). All dogs survived until the completion of the experiment. Within 2 months after operation, all dogs in the control group failed to regain the movement function of hind limbs, and Olby scores were all 0. In the experimental group, the movement and weight-bearing, as well as walking abilities of the hind limbs gradually recovered, and the Olby scores also showed a gradually increasing trend. There was a significant difference between the two groups from 3 to 8 weeks after operation (P<0.05). Neuroelectrophysiological examination indicated that the electrical signals of the experimental group passed through the transplanted area, and the latency was shortened compared to that at 1 month after operation (P<0.05), showing continuous improvement, but the amplitude did not show significant improvement (P>0.05). The control group was unable to detect any MEP changes after operation. MRI examination showed that the transplanted spinal cord in the experimental group survived and had good continuity with normal spinal cord tissue, while no relevant change was observed in the control group.
CONCLUSION
The vASCT model of dogs was successfully constructed. This surgical procedure can restore the continuity of the spinal cord. The combination of tacrolimus anti-immunity is a key factor for the success of transplantation.
Animals
;
Dogs
;
Female
;
Spinal Cord/blood supply*
;
Spinal Cord Injuries/surgery*
;
Transplantation, Homologous
;
Disease Models, Animal
;
Recovery of Function
;
Plastic Surgery Procedures/methods*
;
Tacrolimus
;
Immunosuppressive Agents

Result Analysis
Print
Save
E-mail