1.Exploration of the effects of quercetin on intervertebral disc degeneration in lumbar intervertebral disc herniation rats based on the FOXO3/Sirt1 pathway
Bowen XIAO ; Cong PENG ; Senwei ZHANG
China Pharmacy 2026;37(1):49-54
OBJECTIVE To investigate the effects of quercetin (QUE) on intervertebral disc degeneration in rats with lumbar intervertebral disc herniation (LDH) and explore its mechanism based on the forkhead box protein O3/silent information regulator 1 (FOXO3/Sirt1) pathway. METHODS A rat model of LDH was established. The successfully modeled rats were randomly divided into LDH group (gavaged with and intraperitoneally injected with an equal volume of normal saline), QUE-L group (gavaged with 50 mg/kg QUE+intraperitoneally injected with an equal volume of normal saline), QUE-H group (gavaged with 100 mg/kg QUE+ intraperitoneally injected with an equal volume of normal saline), and QUE-H+EX-527 (a Sirt1 inhibitor) group (gavaged with 100 mg/kg QUE+intraperitoneally injected with 1 mg/kg EX-527), with 12 rats in each group. Additionally, 12 healthy normal rats were selected as the control group (gavaged with and intraperitoneally injected with an equal volume of normal saline). All rats were administered the corresponding agents once daily for consecutive 8 weeks. After the final administration, the pain threshold and serum levels of inflammatory factors in rats were measured; pathological damage of lumbar intervertebral disc tissue was observed, the apoptosis of nucleus pulposus cells in lumbar intervertebral disc tissue was assessed, and the expression levels of matrix metalloproteinase-3 (MMP-3), phospholipase A2 (PLA2), as well as apoptosis-related proteins and FOXO3/Sirt1 pathway- related proteins in intervertebral disc tissue were determined. RESULTS Compared with LDH group, pathological damage of intervertebral disc tissue were improved significantly in QUE-L group and QUE-H group; paw withdrawal mechanical threshold, paw withdrawal thermal latency, the serum levels of transforming growth factor-β1 and interleukin-10 (IL-10) as well as the expression levels of B-cell lymphoma-2 (Bcl-2), FOXO3 and Sirt1 were significantly increased or prolonged (P<0.05). Serum levels of tumor necrosis factor-α and IL-1β, histopathological score of intervertebral disc tissue, apoptotic rate of nucleus pulposus cells, positive expressions of MMP-3 and PLA2 in intervertebral disc tissue and expression levels of Bcl-2 associated X protein were significantly decreased (P<0.05). Compared with the QUE-H group, the QUE-H+EX-527 group presented aggravated pathological damage of intervertebral disc tissue, and the trends of all the above indicators were significantly reversed(P<0.05). CONCLUSIONS QUE can ameliorate intervertebral disc degeneration in LDH rats, and its mechanism may be related to the activation of the FOXO3/Sirt1 pathway.
2.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
4.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
5.Mechanism of Yuzhi Zhixue Granules in treating polycystic ovary syndrome with insulin resistance in rats via metabolomics and proteomics.
Cong-Hui ZHANG ; Hai-Xin XIANG ; Xiu-Wen WANG ; He XIAO ; Fang-Jiao WEI ; Jing-Chun YAO ; En-Li WANG
China Journal of Chinese Materia Medica 2025;50(12):3368-3376
Metabonomics and proteomics were employed to investigate the mechanism of Yuzhi Zhixue Granules in treating polycystic ovary syndrome with insulin resistance(PCOS-IR). The disease model was established by feeding a high-fat diet and gavage of letrozole solution and it was then treated with different doses of Yuzhi Zhixue Granules. The therapeutic effect of Yuzhi Zhixue Granules was evaluated based on the body mass, homeostasis model assessment of insulin resistance and insulin sensitivity index, serum levels of adipokines, and histopathological changes of rats. Metabolomics and proteomics were employed to find the action pathways of Yuzhi Zhixue Granules. The results showed that Yuzhi Zhixue Granules reduced the body mass, improved the insulin sensitivity and aromatase activity, improved the levels of leptin, adiponectin and other adipokines, and alleviated insulin resistance, histopathological changes, and metabolic disorders in PCOS-IR rats. Metabolomics results revealed 14 metabolites with altered levels in the ovarian tissue, which were closely related to glutathione metabolism and pyruvate metabolism. Proteomics results showed that the therapeutic effect of Yuzhi Zhixue Granules was mainly related to the adipokine, adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), forkhead box protein O(FoxO), and mechanistic target of rapamycin(mTOR) signaling pathways. Western blot results showed that compared with the model group, Yuzhi Zhixue Granules treatment decreased the p-AMPK/AMPK and p-FoxO1/FoxO1 levels, increased the p-mTOR/mTOR level, and up-regulated the expression level of recombinant glucose transporter 4(GLUT4). Yuzhi Zhixue Granules can balance amino acid metabolism and pyruvate metabolism by regulating the AMPK/mTOR/FoxO/GLUT pathway to maintain the homeostasis of the ovarian environment and alleviate insulin resistance, thus treating PCOS-IR.
Animals
;
Female
;
Insulin Resistance
;
Polycystic Ovary Syndrome/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Metabolomics
;
Proteomics
;
Rats, Sprague-Dawley
;
Humans
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
6.Shionone Inhibits Glomerular Fibirosis by Suppressing NLRP3 Related Inflammasome though SESN2-NRF2/ HO-1 Pathway
Tian XIAO ; Hanzhen ZHAO ; Yucong WANG ; Mengyin CHEN ; Cong WANG ; Chen QIAO
Diabetes & Metabolism Journal 2025;49(1):34-48
Background:
Diabetic nephropathy (DN) is the most common and serious complication of diabetes mellitus. Shionone (SH), an important triterpenoid compound in the root extract of Aster, might exert a protective effect in DN mice and high glucose cultivated glomerular podocytes. The current study aimed to unravel the underlying mechanism by which SH mitigates DN. We postulate that SH stimulates the expression of sestrin-2 (SESN2), a pivotal stress-inducible protein in the anti-inflammasome machinery.
Methods:
We utilized high-fat diet combined with streptozotocin (55 mg/kg intraperitoneal) for DN mice model, and high glucose (30 mM, 48 hours) cultured glomerular podocytes for DN cell model to evaluate the effect of SH. We also preformed experimentation on SESN2 deficiency models (SESN2 knockout mice and SESN2 siRNA in cells) to further prove our hypothesis.
Results:
The results demonstrated that SH effectively suppressed glomerular fibrosis, induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and inhibited NLR family pyrin domain containing 3 (NLRP3) activation. Furthermore, our findings revealed that SH exerted its anti-inflammatory effect through Sesn2-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and subsequent activation of its downstream target heme oxygenase-1 (HO-1).
Conclusion
In summary, our findings suggest that SH serves as a promising therapeutic agent for the treatment of DN-related glomerular fibrosis. SH enhances the expression of SESN2, attenuates α-smooth muscle actin accumulation, and suppresses NLRP3-related inflammation through the Nrf2/HO-1 signaling pathway.
7.Shionone Inhibits Glomerular Fibirosis by Suppressing NLRP3 Related Inflammasome though SESN2-NRF2/ HO-1 Pathway
Tian XIAO ; Hanzhen ZHAO ; Yucong WANG ; Mengyin CHEN ; Cong WANG ; Chen QIAO
Diabetes & Metabolism Journal 2025;49(1):34-48
Background:
Diabetic nephropathy (DN) is the most common and serious complication of diabetes mellitus. Shionone (SH), an important triterpenoid compound in the root extract of Aster, might exert a protective effect in DN mice and high glucose cultivated glomerular podocytes. The current study aimed to unravel the underlying mechanism by which SH mitigates DN. We postulate that SH stimulates the expression of sestrin-2 (SESN2), a pivotal stress-inducible protein in the anti-inflammasome machinery.
Methods:
We utilized high-fat diet combined with streptozotocin (55 mg/kg intraperitoneal) for DN mice model, and high glucose (30 mM, 48 hours) cultured glomerular podocytes for DN cell model to evaluate the effect of SH. We also preformed experimentation on SESN2 deficiency models (SESN2 knockout mice and SESN2 siRNA in cells) to further prove our hypothesis.
Results:
The results demonstrated that SH effectively suppressed glomerular fibrosis, induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and inhibited NLR family pyrin domain containing 3 (NLRP3) activation. Furthermore, our findings revealed that SH exerted its anti-inflammatory effect through Sesn2-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and subsequent activation of its downstream target heme oxygenase-1 (HO-1).
Conclusion
In summary, our findings suggest that SH serves as a promising therapeutic agent for the treatment of DN-related glomerular fibrosis. SH enhances the expression of SESN2, attenuates α-smooth muscle actin accumulation, and suppresses NLRP3-related inflammation through the Nrf2/HO-1 signaling pathway.
8.Shionone Inhibits Glomerular Fibirosis by Suppressing NLRP3 Related Inflammasome though SESN2-NRF2/ HO-1 Pathway
Tian XIAO ; Hanzhen ZHAO ; Yucong WANG ; Mengyin CHEN ; Cong WANG ; Chen QIAO
Diabetes & Metabolism Journal 2025;49(1):34-48
Background:
Diabetic nephropathy (DN) is the most common and serious complication of diabetes mellitus. Shionone (SH), an important triterpenoid compound in the root extract of Aster, might exert a protective effect in DN mice and high glucose cultivated glomerular podocytes. The current study aimed to unravel the underlying mechanism by which SH mitigates DN. We postulate that SH stimulates the expression of sestrin-2 (SESN2), a pivotal stress-inducible protein in the anti-inflammasome machinery.
Methods:
We utilized high-fat diet combined with streptozotocin (55 mg/kg intraperitoneal) for DN mice model, and high glucose (30 mM, 48 hours) cultured glomerular podocytes for DN cell model to evaluate the effect of SH. We also preformed experimentation on SESN2 deficiency models (SESN2 knockout mice and SESN2 siRNA in cells) to further prove our hypothesis.
Results:
The results demonstrated that SH effectively suppressed glomerular fibrosis, induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and inhibited NLR family pyrin domain containing 3 (NLRP3) activation. Furthermore, our findings revealed that SH exerted its anti-inflammatory effect through Sesn2-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and subsequent activation of its downstream target heme oxygenase-1 (HO-1).
Conclusion
In summary, our findings suggest that SH serves as a promising therapeutic agent for the treatment of DN-related glomerular fibrosis. SH enhances the expression of SESN2, attenuates α-smooth muscle actin accumulation, and suppresses NLRP3-related inflammation through the Nrf2/HO-1 signaling pathway.
9.Shionone Inhibits Glomerular Fibirosis by Suppressing NLRP3 Related Inflammasome though SESN2-NRF2/ HO-1 Pathway
Tian XIAO ; Hanzhen ZHAO ; Yucong WANG ; Mengyin CHEN ; Cong WANG ; Chen QIAO
Diabetes & Metabolism Journal 2025;49(1):34-48
Background:
Diabetic nephropathy (DN) is the most common and serious complication of diabetes mellitus. Shionone (SH), an important triterpenoid compound in the root extract of Aster, might exert a protective effect in DN mice and high glucose cultivated glomerular podocytes. The current study aimed to unravel the underlying mechanism by which SH mitigates DN. We postulate that SH stimulates the expression of sestrin-2 (SESN2), a pivotal stress-inducible protein in the anti-inflammasome machinery.
Methods:
We utilized high-fat diet combined with streptozotocin (55 mg/kg intraperitoneal) for DN mice model, and high glucose (30 mM, 48 hours) cultured glomerular podocytes for DN cell model to evaluate the effect of SH. We also preformed experimentation on SESN2 deficiency models (SESN2 knockout mice and SESN2 siRNA in cells) to further prove our hypothesis.
Results:
The results demonstrated that SH effectively suppressed glomerular fibrosis, induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and inhibited NLR family pyrin domain containing 3 (NLRP3) activation. Furthermore, our findings revealed that SH exerted its anti-inflammatory effect through Sesn2-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and subsequent activation of its downstream target heme oxygenase-1 (HO-1).
Conclusion
In summary, our findings suggest that SH serves as a promising therapeutic agent for the treatment of DN-related glomerular fibrosis. SH enhances the expression of SESN2, attenuates α-smooth muscle actin accumulation, and suppresses NLRP3-related inflammation through the Nrf2/HO-1 signaling pathway.
10.Correlation between blood pressure trajectory and hearing threshold among workers exposed to occupational noise in a city's rail transit enterprise
Hongting ZHAN ; Qia WANG ; Xinmei CHEN ; Zhiping LIANG ; Cong LI ; Danyan CAO ; Aichu YANG ; Minghui XIAO
Journal of Environmental and Occupational Medicine 2025;42(6):724-731
Background Hypertension is one of the chronic diseases with the highest prevalence in China, and a history of hypertension may potentially exacerbate hearing loss. Investigating the association between long-term blood pressure trends and hearing thresholds could contribute to hearing protection efforts for occupationally noise-exposed populations. Objective By investigating hearing thresholds and blood pressure levels among occupationally noise-exposed workers in an urban rail transit enterprise, and conducting a comprehensive analysis of the association between long-term blood pressure changes and hearing thresholds, to provide data references for health management strategies targeting occupationally noise-exposed workers. Methods Workers exposed to occupational noise at a rail transit enterprise were enrolled as study subjects and underwent pure-tone audiometry. Group-based trajectory modeling was employed to identify blood pressure trajectories. Categorical data were compared using chi-square tests, while normally distributed continuous variables were analyzed via t-tests and analysis of variance (ANOVA). Generalized linear mixed models (GLMMs) were subsequently applied toexamine associations between these trajectory groups and high-frequency hearing thresholds. Results Among 2 002 occupationally noise-exposed workers, the median (P25, P75) age was 32 (28, 35) years, with a median (P25, P75) working tenure of 7 (3, 10) years. In 2019, the positive hypertension rate was 9.04%, with a mean systolic blood pressure (SBP) of (122.97±11.60) mmHg and a mean diastolic blood pressure (DBP) of (76.37±9.02) mmHg. The hearing loss prevalence was 10.1%, showing bilateral high-frequency average hearing thresholds of (17.18±8.71) dB and speech-frequency average thresholds of (13.79±3.46) dB. Three distinct trajectory groups were identified for both SBP and DBP. Compared with other trajectory groups, the high-stable DBP group exhibited significantly higher hearing loss prevalence (χ2=6.34, P=0.042) and elevated high-frequency hearing thresholds (all Ps<0.05). Specifically, within the 30-39 age subgroup, the moderate-stable DBP group demonstrated 1.96 dB lower high-frequency thresholds than the high-stable group [β(95%CI): −1.96 (−3.61, −0.32), P=0.020]. Conclusion Among occupationally noise-exposed workers in a municipal rail transit enterprise, DBP trajectories demonstrated a positive association with high-frequency hearing thresholds. Notably, in young and middle-aged occupationally noise-exposed populations, DBP may exert a more critical influence than SBP on the progression of hearing loss.


Result Analysis
Print
Save
E-mail