1.Effect of ultrasound-guided foraminal electroacupuncture on spinal cord injury based on the Wnt/β-catenin signaling pathway.
Weixian WU ; Bin CHEN ; Jing LIU ; Li WANG ; Feizhen CHEN ; Yanling WU
Chinese Acupuncture & Moxibustion 2025;45(10):1442-1449
OBJECTIVE:
To observe the effects of ultrasound-guided foraminal electroacupuncture on neuronal apoptosis and motor function in rats with spinal cord injury (SCI), and to explore the potential underlying mechanisms.
METHODS:
Thirty-six SPF-grade Sprague-Dawley rats were randomly assigned to a sham operation group, a model group, and an ultrasound-guilded electroacupuncture group (electroacupuncture group), with 12 rats in each group. In the sham operation group, the spinal cord was exposed and then the incision was sutured without contusion. In the other two groups, SCI models were established using a modified Allen's impact method. On days 1, 3, 7, and 14 after modeling, the electroacupuncture group received electroacupuncture intervention at the T9/T10 and T10/T11 intervertebral foramen under ultrasound guidance, avoiding spinal cord injury. Stimulation parameters were dense-disperse wave at 2 Hz/100 Hz and 1-2 mA for each session. Following interventions on days 1, 3, 7, and 14, the Basso-Beattie-Bresnahan (BBB) score was assessed; the inclined plane test was used to assess hindlimb grip strength in rats. After the intervention, HE staining was used to observe spinal cord morphology; TUNEL staining was used to detect neuronal apoptosis; ELISA was used to measure the serum levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α); Western blot was used to analyze the protein expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN in spinal tissue; quantitative real-time PCR was used to detect the mRNA expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN.
RESULTS:
Compared with the sham operation group, the model group showed significantly reduced BBB scores (P<0.05), and reduced inclined plane angles (P<0.05) at all time points. Compared with the model group, the electroacupuncture group exhibited increased BBB scores on days 3, 7, and 14 (P<0.05), and higher inclined plane angles on days 1, 3, 7, and 14 (P<0.05). Compared with the sham operation group, the model group showed disorganized spinal cord structure with increased inflammatory cells and necrotic neurons, higher number of apoptotic neurons in spinal tissue (P<0.05), elevated serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, c-Myc, and Bax (P<0.05), and decreased protein and mRNA expression of Bcl-2 and NeuN in spinal tissue (P<0.05). Compared with the model group, the electroacupuncture group had fewer inflammatory cells and apoptotic neurons in spinal tissue (P<0.05), reduced serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, Bcl-2, and NeuN (P<0.05), and decreased protein and mRNA expression of c-Myc and Bax in spinal tissue (P<0.05).
CONCLUSION
Ultrasound-guided foraminal electroacupuncture could improve motor function in rats with SCI, potentially by regulating the expression of molecules related to the Wnt-4/β-catenin signaling pathway to inhibit neuronal apoptosis and inflammatory responses.
Animals
;
Electroacupuncture/methods*
;
Spinal Cord Injuries/physiopathology*
;
Rats, Sprague-Dawley
;
Rats
;
Wnt Signaling Pathway
;
Male
;
Humans
;
Female
;
beta Catenin/metabolism*
;
Apoptosis
;
Ultrasonography
;
Tumor Necrosis Factor-alpha/genetics*
;
Spinal Cord/metabolism*
2.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
3.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
4.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
5.Differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting in Shandong, China.
Yue WANG ; Xin-Ying MAO ; Yu DING ; Hong-Xia YU ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2025;50(6):1524-1533
In order to compare the differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting, growth indexes, photosynthetic characteristics, soil enzyme activities, secondary metabolite contents, and antioxidant activities of P. quinquefolius under different planting modes were examined and compared, and One-way analysis of variance(ANOVA) and correlation analyses were carried out by using the software SPSS 25.0 and GraphPad Prism 9.5. The Origin 2021 software was used for plotting. The results showed that compared with those under field planting, the plant height, leaf length, leaf width, photosynthetic rate, and chlorophyll content of P. quinquefolius under understory planting were significantly reduced, and arbuscular mycorrhizal fungi(AMF) infestation rate and infestation intensity, ginsenoside content, and antioxidant activity were significantly increased. The activities of inter-root soil urease, sucrase, and catalase increased, while the activities of non-inter-root soil urease and alkaline phosphatase increased. Correlation analyses showed that the plant height and leaf length of P. quinquefolius plant were significantly positively correlated with net photosynthetic rate, transpiration rate, chlorophyll content, and electron transfer rate(P<0.05), while ginsenoside content was significantly negatively correlated with net photosynthetic rate, chlorophyll content, and electron transfer rate(P<0.05) and significantly positively correlated with AMF infestation rate and infestation intensity(P<0.05). In addition, ginsenoside content was significantly positively correlated with the activities of inter-root soil sucrase, urease, and catalase(P<0.05). This study provides basic data for revealing the mechanism of secondary metabolite accumulation in P. quinquefolius under understory planting and for exploring and practicing the ecological mode of P. quinquefolius under understory planting.
Panax/microbiology*
;
China
;
Secondary Metabolism
;
Soil/chemistry*
;
Photosynthesis
;
Plant Leaves/metabolism*
;
Chlorophyll/metabolism*
;
Mycorrhizae
6.Mechanism of Compound Ziyin Granules in improving postmenopausal osteoporosis by modulating Wnt/β-catenin pathway.
Wen-Jing LIU ; Fan XIE ; Piao-Piao WANG ; Yu-Ting SUN ; Wen-Yan LI
China Journal of Chinese Materia Medica 2025;50(16):4659-4667
This study investigates the therapeutic effect and underlying mechanism of Compound Ziyin Granules(CZYG) on postmenopausal osteoporosis(PMOP) induced by bilateral ovariectomy in rats. Six-month-old female SD rats were randomly divided into sham-operated(sham) group, ovariectomy(OVX) model group, high-, medium-, and low-dose CZYG groups, and alendronate sodium(AS) group. After 30 days of model establishment, treatment was administered by gavage once daily for 8 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of calcium ions, alkaline phosphatase(AKP), estrogen(E_2), osteoprotegerin(OPG), osteocalcin(BGP), tartrate-resistant acid phosphatase(TRAP), and type Ⅰ procollagen N-terminal propeptide(PINP). Hematoxylin-eosin(HE) staining was used to observe the histopathological changes in the femurs of rats, while micro-computed tomography(micro-CT) was used to analyze the microstructure of the distal femur. Western blot analysis was performed to measure the expression levels of bone metabolism-related proteins, including wingless-type MMTV integration site family member 2(Wnt2), β-catenin, low-density lipoprotein receptor-related protein 5(LRP5), glycogen synthase kinase-3β(GSK-3β). The mRNA expression levels of Wnt2, β-catenin, LRP5, GSK-3β, p-GSK-3β were determined by quantitative real-time PCR(qRT-PCR). Thirty days after bilateral ovariectomy, compared to the sham group, the OVX group showed significant increases in body weight and significant decreases in uterine coefficient. After 8 weeks of treatment, compared to the OVX group, CZYG(medium and high doses) and AS reduced body weight, with high-dose CZYG and AS significantly increasing the uterine coefficient. Serum levels of AKP and TRAP were significantly elevated, while levels of calcium, E_2, BGP, and OPG were significantly decreased in the OVX group. Compared to the OVX group, CZYG and AS significantly reduced serum levels of AKP and TRAP, while high-dose CZYG and AS notably increased the levels of E_2, BGP, OPG, and PINP. Micro-CT and HE staining results indicated that CZYG(medium and high doses) and AS significantly increased bone tissue volume, trabecular number, bone mineral density, and improved the microstructure of the femur. Compared to the OVX group, high-dose CZYG and AS significantly upregulated the protein and mRNA expression levels of Wnt2, β-catenin, and LRP5, and downregulated the phosphorylation level of p-GSK-3β. These results suggest that CZYG can improve PMOP by promoting estrogen secretion, improving bone metabolism indicators, increasing trabecular number and bone mineral density. Its mechanism may be related to the regulation of the Wnt/β-catenin signaling pathway.
Animals
;
Female
;
Rats, Sprague-Dawley
;
Osteoporosis, Postmenopausal/genetics*
;
Rats
;
Wnt Signaling Pathway/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
beta Catenin/genetics*
;
Osteoprotegerin/metabolism*
;
Ovariectomy
;
Calcium/blood*
;
Bone Density/drug effects*
7.Adar3 promotes macrophage M2 polarization and alleviates viral myocarditis by activating the Wnt/β-catenin signaling pathway.
Mengying ZHANG ; Zhi LI ; Weiya PEI ; Shujun WAN ; Xueqin LI ; Kun LYU ; Xiaolong ZHU
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):769-777
Objective To investigate the role and mechanism of RNA-Specific adenosine deaminase 3 (Adar3) in regulating macrophage polarization during Coxsackievirus B3(CVB3)-induced viral myocarditis (VM). Methods Bone marrow-derived macrophages (BMDM) from mice were cultured in vitro and induced into M1/M2 macrophages using interferon-gamma (IFN-γ)/lipopolysaccharide (LPS) or interleukin 4 (IL-4), respectively. The mRNA expression levels of Adar1, Adar2, and Adar3 in each group of cells were assessed by real-time quantitative PCR (qRT-PCR). Specific siRNAs targeting the Adar3 gene were designed, synthesized, and transiently transfected into M2 macrophages. The mRNA levels of M2 polarization-related marker genes-including arginase 1 (Arg1), chitinase 3-like molecule 3 (YM1/Chi3l3), and resistin-like molecule alpha (RELMα/FIZZ1)-were detected by qRT-PCR. RNA sequencing was performed to analyze the signaling pathways affected by Adar3. The expression levels of Wnt/β-catenin signaling pathway were further validated using qRT-PCR and Western blot. The adeno-associated virus overexpressing Adar3 was designed, synthesized, and injected into mice via tail vein. Three weeks later, a myocarditis mouse model was established. After an additional week, the phenotype and function of cardiac macrophages, as well as multiple indicators of VM (including echocardiography, body weight, histopathology and serology) were examined. Additionally, the protein levels of the Wnt/β-catenin signaling pathway were assessed. Results Compared to M0-type macrophages, the expression level of Adar3 was significantly increased in M2-type macrophages. After transfection of Adar3 siRNA, the mRNA levels of Arg1, YM1 and FIZZ1 in M2 macrophages were downregulated. RNA sequencing revealed 149 upregulated genes and 349 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and subsequent validation experiments indicated that Adar3 modulated the Wnt/β-catenin signaling pathway. In vivo experiments demonstrated that Adar3 overexpression alleviated the cardiac dysfunction of VM mice. The proportion of M1 macrophages in the heart decreased, while the proportion of M2 macrophages increased. At the same time, the Adar3 overexpression activated the Wnt/β-catenin signaling pathway. Conclusion Adar3 promotes macrophage polarization toward the M2 phenotype by activating the Wnt/β-catenin signaling pathway, thereby alleviating VM.
Animals
;
Adenosine Deaminase/metabolism*
;
Macrophages/immunology*
;
Wnt Signaling Pathway/genetics*
;
Myocarditis/immunology*
;
Mice
;
Coxsackievirus Infections/metabolism*
;
Male
;
Mice, Inbred BALB C
;
Enterovirus B, Human/physiology*
;
beta Catenin/genetics*
8.Role of Brg1 in regulating the Wnt/β-catenin signaling pathway in a bronchopulmonary dysplasia model.
Ling GUAN ; Mao-Zhu XU ; Yao-Zheng LING ; Li-Li YANG ; Ling-Huan ZHANG ; Sha LIU ; Wen-Jing ZOU ; Zhou FU
Chinese Journal of Contemporary Pediatrics 2025;27(6):731-739
OBJECTIVES:
To investigate the role and mechanism of Brahma-related gene 1 (Brg1) in regulating the Wnt/β-catenin signaling pathway in a bronchopulmonary dysplasia (BPD) model.
METHODS:
Wild-type C57BL/6 and Brg1f1/f1 mice were randomly divided into four groups: wild-type control, wild-type BPD, Brg1f1/f1 control, and Brg1f1/f1 BPD (n=5 each). Immortalized mouse pulmonary alveolar type 2 cells (imPAC2) were cultured, and Brg1 gene was knocked down using lentivirus transfection technology. Cells were divided into three groups: control, empty vector, and Brg1 knockdown. Hematoxylin and eosin staining and immunofluorescence were used to detect pathological changes in mouse lung tissue. Western blot and real-time fluorescent quantitative PCR were used to measure Brg1 protein and mRNA expression levels in mouse lung tissue. Western blot and immunofluorescence were used to detect the expression of homeodomain-containing protein homeobox (HOPX), surfactant protein C (SPC), and Wnt/β-catenin signaling pathway proteins in mouse lung tissue and imPAC2 cells. The CCK8 assay was used to assess the proliferation of imPAC2 cells, and co-immunoprecipitation was performed to verify the interaction between Brg1 and β-catenin proteins in imPAC2 cells.
RESULTS:
Compared to the Brg1f1/f1 control group and wild-type BPD group, the Brg1f1/f1 BPD group showed increased alveolar diameter and SPC protein expression, and decreased relative density of pulmonary vasculature and HOPX protein expression (P<0.05). Compared to the control group, the Brg1 knockdown group showed increased cell proliferation ability, protein expression levels of SPC, Wnt5a and β-catenin, and β-catenin protein fluorescence intensity, along with decreased HOPX protein expression (P<0.05). An interaction between Brg1 and β-catenin proteins was confirmed.
CONCLUSIONS
The Brg1 gene may promote the proliferation of alveolar type 2 epithelial cells by regulating the Wnt/β-catenin signaling pathway, thus influencing the occurrence and development of BPD.
Animals
;
DNA Helicases/genetics*
;
Transcription Factors/genetics*
;
Wnt Signaling Pathway/physiology*
;
Nuclear Proteins/genetics*
;
Mice
;
Bronchopulmonary Dysplasia/etiology*
;
Mice, Inbred C57BL
;
beta Catenin/physiology*
;
Disease Models, Animal
;
Cell Proliferation
;
Lung/pathology*
;
Male
9.Investigation of the Effects of Arsenic Trioxide Combined with Deslorelin on Proliferation and Apoptosis of Jurkat Cells Based on Wnt/β-Catenin Pathway.
Journal of Experimental Hematology 2025;33(3):640-647
OBJECTIVE:
To investigate the effect of Arsenic trioxide (ATO) combined with Norcantharidin (NCTD) on the proliferation and apoptosis of Jurkat cells, and to evaluate its effect on the proliferation and apoptosis of acute T-lymphoblastic leukemia (T-ALL) based on the Wnt/β-catenin signaling pathway.
METHODS:
Jurkat cell lines were used as the study subjects and treated with different concentrations of ATO (0, 2, 4, 8, 16 μmol/L) and NCTD (0, 10, 25, 50, 100 μmol/L) for 72 hours, and the cell proliferation was detected by CCK-8. Meanwhile, flow cytometry was used to detect the apoptosis rate, EdU staining to detect cell proliferation viability, cell clone formation assay to assess cell cloning ability, Transwell assay to assess cell invasion ability, and Western blot to detect apoptosis and the expression of Wnt/β-catenin signaling pathway-related proteins.
RESULTS:
Compared with the control group, both ATO and NCTD effectively inhibited Jurkat cell proliferation when used alone, and the inhibition effect was more significant when used in combination ( P < 0.05). The combination significantly increased the apoptosis rate of Jurkat cells ( P < 0.05). Meanwhile, the combination significantly decreased the proliferation vitality and clone formation ability of the cells ( P < 0.05), and inhibited the invasion ability of Jurkat cells ( P < 0.05). Western blot analysis showed that the combination of ATO and NCTD significantly up-regulated the expression of pro-apoptotic proteins Bax and E-cadherin, and down-regulated the expression of anti-apoptotic proteins Bcl-2, c-myc and Cyclin D1 ( P < 0.05).
CONCLUSION
The combination of ATO and NCTD had a synergistic effect in inhibiting proliferation and promoting apoptosis in Jurkat cells, which may be related to the inhibition of Wnt/β-catenin signaling pathway.
Humans
;
Apoptosis/drug effects*
;
Jurkat Cells
;
Cell Proliferation/drug effects*
;
Arsenic Trioxide
;
Wnt Signaling Pathway/drug effects*
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
beta Catenin/metabolism*
;
Arsenicals/pharmacology*
;
Oxides/pharmacology*
10.Research Progress of the Wnt/β-catenin Signaling Pathway in the Regulation of Oxidative Stress and Its Impact on the Hematopoietic System --Review.
Journal of Experimental Hematology 2025;33(3):927-930
Excessive generation of reactive oxygen species (ROS) can lead to oxidative-antioxidative imbalance in the organism, resulting in oxidative stress. Hematopoietic stem/progenitor cells (HSPCs) exhibit high sensitivity to changes in ROS levels, and high levels of ROS can impair self-renewal capacity of HSPCs, leading to oxidative damage and even death. Wnt/β-catenin signaling pathway regulates hematopoiesis and plays an important role in determining the fate of stem cells, such as self-renewal, proliferation and differentiation of HSPCs. Studies have shown that Wnt/β-catenin signaling pathway is also closely related to oxidative stress. This article summarizes the relevant literature, and reviews the role of Wnt/β-catenin signaling pathway in oxidative stress, its impact on hematopoietic system, and the current research status of related mechanisms.
Oxidative Stress
;
Humans
;
Wnt Signaling Pathway
;
Hematopoietic Stem Cells
;
Reactive Oxygen Species/metabolism*
;
Hematopoietic System/metabolism*
;
beta Catenin/metabolism*
;
Hematopoiesis

Result Analysis
Print
Save
E-mail