2.A novel glycolysis-related prognostic risk model for colorectal cancer patients based on single-cell and bulk transcriptomic data.
Kai YAO ; Jingyi XIA ; Shuo ZHANG ; Yun SUN ; Junjie MA ; Bo ZHU ; Li REN ; Congli ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):105-115
Objective To explore the prognostic value of glycolysis-related genes in colorectal cancer (CRC) patients and formulate a novel glycolysis-related prognostic risk model. Methods Single-cell and bulk transcriptomic data of CRC patients, along with clinical information, were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Glycolysis scores for each sample were calculated using single-sample Gene Set Enrichment Analysis (ssGSEA). Kaplan-Meier survival curves were generated to analyze the relationship between glycolysis scores and overall survival. Novel glycolysis-related subgroups were defined among the cell type with the highest glycolysis scores. Gene enrichment analysis, metabolic activity assessment, and univariate Cox regression were performed to explore the biological functions and prognostic impact of these subgroups. A prognostic risk model was built and validated based on genes significantly affecting the prognosis. Gene Set Enrichment Analysis (GSEA) was conducted to explore differences in biological processes between high- and low-risk groups. Differences in immune microenvironment and drug sensitivity between these groups were assessed using R packages. Potential targeted agents for prognostic risk genes were predicted using the Enrichr database. Results Tumor tissues showed significantly higher glycolysis scores than normal tissues, which was associated with a poor prognosis in CRC patients. The highest glycolysis score was observed in epithelial cells, within which we defined eight novel glycolysis-related cell subpopulations. Specifically, the P4HA1+ epithelial cell subpopulation was associated with a poor prognosis. Based on signature genes of this subpopulation, a six-gene prognostic risk model was formulated. GSEA revealed significant biological differences between high- and low-risk groups. Immune microenvironment analysis demonstrated that the high-risk group had increased infiltration of macrophages and tumor-associated fibroblasts, along with evident immune exclusion and suppression, while the low-risk group exhibited higher levels of B cell and T cell infiltration. Drug sensitivity analysis indicated that high-risk patients were more sensitive to Abiraterone, while low-risk patients responded to Cisplatin. Additionally, Valproic acid was predicted as a potential targeted agent. Conclusion High glycolytic activity is associated with a poor prognosis in CRC patients. The novel glycolysis-related prognostic risk model formulated in this study offers significant potential for enhancing the diagnosis and treatment of CRC.
Humans
;
Colorectal Neoplasms/pathology*
;
Glycolysis/genetics*
;
Prognosis
;
Transcriptome
;
Tumor Microenvironment/genetics*
;
Gene Expression Profiling
;
Single-Cell Analysis
;
Gene Expression Regulation, Neoplastic
;
Male
;
Female
;
Kaplan-Meier Estimate
3.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor
4.Exploring effects and mechanisms of Agrimoniae Herba-Coptidis Rhizoma containing serum on colorectal cancer cells via LAMP2A-mediated autophagy.
Ya-Ping HE ; Min-Yan HOU ; Xin-Ling SHEN ; Zhi-Yu LI ; Min XU ; Xuan CHEN ; Shu-Juan ZHANG ; Han XIONG ; Hai-Yan PENG
China Journal of Chinese Materia Medica 2024;49(21):5730-5742
This study investigated the effects of Agrimoniae Herba-Coptidis Rhizoma(XHC-HL)-medicated serum on the proliferation, migration, invasion, and apoptosis of human colorectal cancer HT29 and HCT116 cells via the autophagy mediated by lysosome-associated membrane protein type 2A(LAMP2A). Bioinformatics analysis was conducted to explore the role of LAMP2A in the development and progression of colorectal cancer. Western blot(WB) was used to detect the expression of LAMP2A protein in colorectal cancer cell lines. Lentiviral transfection was utilized to construct LAMP2A knockdown in HT29 and overexpression in HCT116 colorectal cancer cell models. Real-time fluorescence quantitative polymerase chain reaction(real-time qPCR) was performed to assess transfection efficiency. HT29 and HCT116 cells were treated with different concentrations of XHC-HL-medicated serum. The cell counting kit-8(CCK-8) assay was used to detect cell proliferation and determine the optimal concentration and duration of medicated serum intervention. HT29 cells were divided into a normal control(NC) group, an XHC-HL(medicated serum treatment) group, and an XHC-HL+shLAMP2A(medicated serum treatment+LAMP2A knockdown) group. HCT116 cells were divided into a NC group, an XHC-HL group, and an XHC-HL+LAMP2A(medicated serum treatment+LAMP2A overexpression) group. CCK-8 was used to measure cell viability. Colony formation assay was employed to assess cell proliferation ability. Scratch and Transwell migration assays were conducted to evaluate cell migration ability, and Transwell invasion assay was used to detect cell invasion ability. Flow cytometry was adopted to determine apoptosis rates. WB and real-time qPCR were employed to detect the effect of XHC-HL on the protein and mRNA expression of LAMP2A, heat shock cognate protein 70(HSC70), heat shock protein 90(HSP90), and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) in colorectal cancer cells. Differential expression analysis revealed that LAMP2A expression was significantly higher in colorectal cancer patients compared to that in normal controls. Survival analysis indicated that the key molecule of chaperone-mediated autophagy(CMA), LAMP2A, was closely associated with colorectal cancer progression. Gene set enrichment analysis showed that patients with high LAMP2A expression significantly upregulated tumor progression-related signaling pathways such as angiogenesis and immune suppression. Immune infiltration analysis found that patients with high LAMP2A expression had fewer CD8 T cell infiltrations in their tumor microenvironment. XHC-HL-medicated serum inhibited the viability of HT29 and HCT116 cells, with the optimal intervention concentration and duration being 20% and 48 hours, respectively. Compared to the NC group, XHC-HL inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells, and induced apoptosis. The medicated serum treatment with LAMP2A knockdown further inhibited colorectal cancer cell proliferation, invasion, and migration, and promoted apoptosis, whereas overexpression of LAMP2A reversed the inhibitory effects of the medicated serum on proliferation, migration, and invasion, and reduced apoptosis rates. XHC-HL-medicated serum inhibited CMA by upregulating the protein and mRNA expression of LAMP2A, HSC70, and HSP90 and downregulating substrate protein GAPDH expression via the autophagy mediated by LAMP2A. In conclusion, XHC-HL-medicated serum inhibits the proliferation, migration, and invasion of colorectal cancer cells and induces apoptosis by downregulating the expression of the key CMA molecule LAMP2A and inhibiting CMA activity.
Humans
;
Colorectal Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Lysosomal-Associated Membrane Protein 2/metabolism*
;
Cell Proliferation/drug effects*
;
Autophagy/drug effects*
;
HCT116 Cells
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
HT29 Cells
;
Serum/chemistry*
;
Coptis chinensis
5.Mechanism of osthole against colorectal cancer based on network pharmacology, molecular docking, and experimental validation.
China Journal of Chinese Materia Medica 2024;49(21):5752-5761
Through in vitro and in vivo experiments, combined with network pharmacology and molecular docking techniques, this study investigated the mechanism of action of osthole in the treatment of colorectal cancer(CRC). The relevant targets of osthole and CRC were retrieved from the SwissTargetPrediction and SuperPred in drug databases, as well as GeneCards and OMIM in disease databases. Protein-protein interaction(PPI) networks were constructed using the STRING database and Cytoscape 3.8.0 software, and core targets were screened. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on common targets. Molecular docking validation of core targets with osthole was conducted using AutoDock Vina software. HCT116 cells were treated with different concentrations of osthole, and cell proliferation was detected using the CCK-8 assay and the clonogenic assay. Cell migration ability was assessed using Transwell assay. Western blot and RT-qPCR were performed to detect the expression of caspase-3(CASP3), hypoxia-inducible factor 1 alpha(HIF1A), nuclear factor kappa B subunit 1(NFKB1), glycogen synthase kinase-3 beta(GSK3B), phosphorylated-GSK3B(p-GSK3B), protein kinase B(Akt), phosphorylated-Akt(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated-mTOR(p-mTOR). A subcutaneous tumor model of HCT116 cells in nude mice was established, and the mice were randomly divided into the model group, low-dose osthole group(20 mg·kg~(-1)), medium-dose osthole group(40 mg·kg~(-1)), and high-dose osthole group(60 mg·kg~(-1)). After 18 days of administration, the growth of tumor xenografts was observed, and the size and weight of tumors were measured after excision. Hematoxylin-eosin(HE) staining was performed to observe the histological changes in tumors in each group. Network pharmacology analysis revealed that osthole treatment of CRC mainly involved 106 treatment targets and 113 treatment pathways, with key pathways including the PI3K/Akt signaling pathway and MAPK signaling pathway. Molecular docking results showed a strong correlation between osthole and core targets. In vitro studies demonstrated that osthole significantly inhibited the proliferation and migration ability of HCT116 cells. Western blot and RT-qPCR experiments showed that compared to those in the model group, the expression of NFKB1, HIF1A, p-Akt, p-mTOR, and GSK3B in the osthole-treated group was significantly decreased, while the expression of CASP3 and p-GSK3B(Ser9) was significantly increased. In vivo studies showed that compared to the model group, osthole-fed animals significantly reduced tumor weight and volume, inhibited tumor growth, and promoted tumor apoptosis, and the results showed a dose-dependent trend. The study suggested that osthole could inhibit the proliferation and migration of HCT116 cells in CRC, and its mechanism may be related to the regulation of the PI3K/Akt signaling pathway and the expression of core targets.
Coumarins/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Colorectal Neoplasms/pathology*
;
Animals
;
Network Pharmacology
;
Mice
;
Cell Proliferation/drug effects*
;
HCT116 Cells
;
Mice, Nude
;
Mice, Inbred BALB C
;
Proto-Oncogene Proteins c-akt/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
6.Clinical significance of tertiary lymphoid structure maturity in colorectal cancer patients.
Jiangjiang ZHENG ; Jingjing YU ; Jingjing XIE ; Dong CHEN ; Hong DENG
Journal of Zhejiang University. Medical sciences 2024;53(6):765-771
OBJECTIVES:
To explore the clinical significance of the tertiary lymphoid structure (TLS) maturity in colorectal cancer patients.
METHODS:
A total of 230 surgically removed colorectal cancer specimens with detailed follow-up data were collected from Yinzhou Second Hospital. The patients were divided into mature TLS group and immature TLS group according to immunohistochemical results. The patient age, gender, maximum tumor diameter, tumor location, differentiation degree, depth of invasion, lymph node metastasis, vascular tumor thrombus, liver metastasis, distant non-liver metastasis, mismatch repair status, expression of Ki-67, P53 and programmed death-ligand (PD-L) 1 were analyzed. The Kaplan-Meier method (Breslow test) was used to analyze the survival of patients, and multivariate Cox regression model was applied to analyze the prognostic factors.
RESULTS:
There were 128 cases of mature TLS and 102 cases of immature TLS. Compared to the immature TLS group, the mature TLS group showed a significantly lower rate of vascular tumor thrombus, lymph node metastasis, and liver metastasis. Additionally, the positive expression rate of Ki-67 was markedly reduced, while the rate of deficient mismatch repair and the positive rate of PD-L1 were significantly increased (all P<0.05). The overall survival rate of the mature TLS group was superior to that of the immature TLS group (Breslow=4.553, P<0.05). Cox regression analysis indicated that lymph node metastasis was an independent risk factor for the prognosis of colorectal cancer patients (P<0.01), while TLS maturation was a protective factor (P<0.05).
CONCLUSIONS
The formation of TLS may play a significant role in inhibiting lymph node metastasis, liver metastasis, and vascular tumor thrombus in colorectal cancer. In addition, patients with mature TLS have a favorable clinical prognosis.
Humans
;
Colorectal Neoplasms/pathology*
;
Male
;
Female
;
Middle Aged
;
Tertiary Lymphoid Structures/pathology*
;
Prognosis
;
Aged
;
Adult
;
Lymphatic Metastasis
;
Ki-67 Antigen/metabolism*
;
B7-H1 Antigen/metabolism*
;
Clinical Relevance
7.Colonic stenting in acute malignant large bowel obstruction: audit of efficacy and safety in a Singapore tertiary referral centre.
James Weiquan LI ; James Chi-Yong NGU ; Kok Ren LIM ; Shu Wen TAY ; Bochao JIANG ; Ramesh WIJAYA ; Sulaiman YUSOF ; Calvin Jianming ONG ; Andrew Boon EU KWEK ; Tiing Leong ANG
Singapore medical journal 2023;64(10):603-608
INTRODUCTION:
Acute malignant large bowel obstruction (MBO) occurs in 8%-15% of colorectal cancer patients. Self-expandable metal stents (SEMS) have progressed from a palliative modality to use as bridge to surgery (BTS). We aimed to assess the safety and efficacy of SEMS for MBO in our institution.
METHODS:
The data of patients undergoing SEMS insertion for MBO were reviewed. Technical success was defined as successful SEMS deployment across tumour without complications. Clinical success was defined as colonic decompression without requiring further surgical intervention. Rates of complications, median time to surgery, types of surgery and rates of recurrence were studied.
RESULTS:
Seventy-nine patients underwent emergent SEMS placement from September 2013 to February 2020. Their mean age was 68.8 ± 13.8 years and 43 (54%) patients were male. Mean tumour length was 4.2 cm ± 2.2 cm; 89.9% of malignant strictures were located distal to the splenic flexure. Technical and clinical success was 94.9% and 98.7%, respectively. Perforation occurred in 5.1% of patients, with none having stent migration or bleeding. Fifty (63.3%) patients underwent SEMS insertion as BTS. Median time to surgery was 20 (range 6-57) days. Most (82%) patients underwent minimally invasive surgery. Primary anastomosis rate was 98%. Thirty-nine patients had follow-up beyond 1-year posttreatment (median 34 months). Local recurrence and distant metastasis were observed in 4 (10.3%) and 5 (12.8%) patients, respectively.
CONCLUSION
Insertion of SEMS for acute MBO has high success rates and a good safety profile. Most patients in this audit underwent minimally invasive surgery and primary anastomosis after successful BTS.
Humans
;
Male
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Female
;
Colorectal Neoplasms/pathology*
;
Singapore
;
Tertiary Care Centers
;
Stents/adverse effects*
;
Intestinal Obstruction/etiology*
;
Treatment Outcome
;
Retrospective Studies
;
Palliative Care
8.Comprehensive assessment of mismatch repair and microsatellite instability status in molecular classification of endometrial carcinoma.
Yan LIU ; Yu Xiang WANG ; Xiao Jie SUN ; Xia TING ; Rui WU ; Xiao Dan LIU ; Cong Rong LIU
Chinese Journal of Obstetrics and Gynecology 2023;58(10):755-765
Objective: To explore the concordance and causes of different mismatch repair (MMR) and microsatellite instability (MSI) detection results in endometrial carcinoma (EC) molecular typing. Methods: A total of 214 EC patients diagnosed from January 2021 to April 2023 were selected at the Department of Pathology, Peking University Third Hospital. The immunohistochemistry (IHC) results of MMR protein were reviewed. Tumor specific somatic mutations, MMR germline mutations, microsatellite scores and tumor mutation burden (TMB) were detected by next-generation sequencing (NGS) with multi-gene panel. Methylation-specific PCR was used to detect the methylation status of MLH1 gene promoter in cases with deficient MLH1 protein expression. In cases with discrepant results between MMR-IHC and MSI-NGS, the MSI status was detected again by PCR (MSI-PCR), and the molecular typing was determined by combining the results of TMB and MLH1 gene promoter methylation. Results: (1) In this study, there were 22 cases of POLE gene mutation subtype, 55 cases of mismatch repair deficient (MMR-d) subtype, 29 cases of p53 abnormal subtype, and 108 cases of no specific molecular profile (NSMP). The median age at diagnosis of MMR-d subtype (54 years old) and the proportion of aggressive histological types (40.0%, 22/55) were higher than those of NSMP subtype [50 years old and 12.0% (13/108) respectively; all P<0.05]. (2) Among 214 patients, MMR-IHC test showed that 153 patients were mismatch repair proficient (MMR-p), 49 patients were MMR-d, and 12 patients were difficult to evaluate directly. MSI-NGS showed that 164 patients were microsatellite stable (MSS; equal to MMR-p), 48 patients were high microsatellite instability (MSI-H; equal to MMR-d), and 2 patients had no MSI-NGS results because the effective sequencing depth did not meet the quality control. The overall concordance between MMR-IHC and MSI-NGS was 94.3% (200/212). All the 12 discrepant cases were MMR-d or subclonal loss of MMR protein by IHC, but MSS by NGS. Among them, 10 cases were loss or subclonal loss of MLH1 and (or) PMS2 protein. Three discrepant cases were classified as POLE gene mutation subtype. In the remaining 9 cases, 5 cases and 3 cases were confirmed as MSI-H and low microsatellite instability (MSI-L) respectively by MSI-PCR, 6 cases were detected as MLH1 gene promoter methylation and 7 cases demonstrated high TMB (>10 mutations/Mb). These 9 cases were classified as MMR-d EC. (3) Lynch syndrome was diagnosed in 27.3% (15/55) of all 55 MMR-d EC cases, and the TMB of EC with MSH2 and (or) MSH6 protein loss or associated with Lynch syndrome [(71.0±26.2) and (71.5±20.1) mutations/Mb respectively] were significantly higher than those of EC with MLH1 and (or) PMS2 loss or sporadic MMR-d EC [(38.2±19.1) and (41.9±24.3) mutations/Mb respectively, all P<0.01]. The top 10 most frequently mutated genes in MMR-d EC were PTEN (85.5%, 47/55), ARID1A (80.0%, 44/55), PIK3CA (69.1%, 38/55), KMT2B (60.0%, 33/55), CTCF (45.5%, 25/55), RNF43 (40.0%, 22/55), KRAS (36.4%, 20/55), CREBBP (34.5%, 19/55), LRP1B (32.7%, 18/55) and BRCA2 (32.7%, 18/55). Concurrent PTEN, ARID1A and PIK3CA gene mutations were found in 50.9% (28/55) of MMR-d EC patients. Conclusions: The concordance of MMR-IHC and MSI-NGS in EC is relatively high.The discordance in a few MMR-d EC are mostly found in cases with MLH1 and (or) PMS2 protein loss or MMR protein subclonal staining caused by MLH1 gene promoter hypermethylation. In order to provide accurate molecular typing for EC patients, MLH1 gene methylation, MSI-PCR, MMR gene germline mutation and TMB should be combined to comprehensively evaluate MMR and MSI status.
Female
;
Humans
;
Middle Aged
;
Class I Phosphatidylinositol 3-Kinases/metabolism*
;
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis*
;
DNA Mismatch Repair/genetics*
;
Endometrial Neoplasms/pathology*
;
Microsatellite Instability
;
Mismatch Repair Endonuclease PMS2/genetics*
;
Molecular Typing
9.Discriminating endoscopic features of sessile serrated lesions.
Wen SHI ; Yuelun ZHANG ; Hanyue DING ; Feng XIE ; Yang CHEN ; Martin C S WONG ; Jingnan LI ; Dong WU
Chinese Medical Journal 2023;136(10):1237-1239
10.Pathological Types,Expression of Mismatch Repair Protein,Human Epidermal Growth Factor Receptor 2,and Pan-TRK,and Eostein-Barr Virus Infection in Patients With Colorectal Cancer Resected in Tibet.
Han-Huan LUO ; Zhen HUO ; BIANBAZHAXI ; Qian WANG ; DUOBULA ; NIMAZHUOMA ; Zhen DA ; Ping-Ping GUO
Acta Academiae Medicinae Sinicae 2023;45(3):422-428
Objective To study the pathological types,expression of mismatch repair protein,human epidermal growth factor receptor 2(HER2),and Pan-TRK,and Epstein-Barr virus(EBV)infection in patients with colorectal cancer resected in Tibet. Methods A total of 79 patients with colorectal cancer resected in Tibet Autonomous Region People's Hospital from December 2013 to July 2021 were enrolled in this study.The clinical and pathological data of the patients were collected.The expression of mismatch repair protein,HER2,and Pan-TRK was detected by immunohistochemical(IHC)staining,and detection of HER2 gene by fluorescence in situ hybridization(FISH)in the patients with HER2 IHC results of 2+ or above.EBV was detected by in situ hybridization with EBV-encoded small RNA. Results A total of 79 colorectal cancer patients were included in this study,with the male-to-female ratio of 1.26:1 and the mean age of(57.06±12.74)years(24-83 years).Among them,4 patients received preoperative neoadjuvant therapy.Colonic cancer and rectal cancer occurred in 57(57/79,72.15%,including 31 and 26 in the right colon and left colon,respectively)and 22(22/79,27.85%)patients,respectively.The maximum diameter of tumor varied within the range of 1-20 cm,with the mean of(6.61±3.33)cm.Among the 79 colorectal cancer patients,75(75/79,94.94%)patients showed adenocarcinoma.Lymph node metastasis occurred in 12(12/21,57.14%)out of the 21 patients with severe tumor budding,13(13/23,56.52%)out of the 23 patients with moderate tumor budding,and 2(2/31,6.45%)out of the 31 patients with mild tumor budding,respectively.The lymph node metastasis rate showed differences between the patients with severe/moderate tumor budding and the patients with mild tumor budding(all P<0.001).The IHC staining showed that mismatch repair protein was negative in 10(10/65,15.38%)patients,including 5 patients with both MSH2 and MSH6 negative,4 patients with both MLH1 and PMS2 negative,and 1 patient with MSH6 negative.Pan-TRK was negative in 65 patients.The IHC results of HER2 showed 0 or 1+ in 60 patients and 2+ in 5 patients.FISH showed no positive signal in the 5 patients with HER2 IHC results of 2+.The detection with EBV-encoded small RNA showed positive result in 1(1/65,1.54%)patient. Conclusions Non-specific adenocarcinoma of the right colon is the most common in the patients with colorectal cancer resected in Tibet,and 15% of the patients showed mismatch repair protein defects.EBV-associated colorectal carcer is rare,Pan-TRK expression and HER2 gene amplification are seldom.The colorectal cancer patients with moderate and severe tumor budding are more likely to have lymph node metastasis.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Adenocarcinoma
;
Biomarkers, Tumor/genetics*
;
Colorectal Neoplasms/pathology*
;
DNA Mismatch Repair
;
DNA-Binding Proteins/genetics*
;
Epstein-Barr Virus Infections/diagnosis*
;
Herpesvirus 4, Human/metabolism*
;
In Situ Hybridization, Fluorescence
;
Lymphatic Metastasis
;
Tibet
;
Young Adult
;
Aged, 80 and over

Result Analysis
Print
Save
E-mail