1.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
2.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male
3.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
4.Neoadjuvant immunotherapy for colorectal cancer.
Chinese Journal of Gastrointestinal Surgery 2023;26(1):58-67
Immunotherapy has been one of the hot topics in the field of colorectal cancer research in recent years. Patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) are the main beneficiaries of immunotherapy. The response rate of patients with dMMR/MSI-H colorectal cancer receiving neoadjuvant immunotherapy is nearly 100%, of which the pathological complete response rate approximately accounts for 60%-67%. The prospect of neoadjuvant immunotherapy in dMMR or MSI-H colorectal cancer patients, especially in the rectal cancer patients, lies in achieving sustainable clinical complete response so as to achieve organ preservation and avoid adverse effects on reproductive, sexual, bowel and bladder function after surgery and radiotherapy. Studies have shown that part of the colorectal cancer patients of microsatellite stability (MSS) or mismatch repair proficient (pMMR) can respond to neoadjuvant immunotherapy in combination with other treatment methods such as radiotherapy and chemotherapy. In pMMR or MSS colorectal cancer, optimizing neoadjuvant immunotherapy regimens and finding effective efficacy prediction biomarkers are important research directions. In neoadjuvant immunotherapy, overcoming primary and secondary resistance and identifying the pseudoprogression and hyperprogression of neoadjuvant immunotherapy are clinical challenges that require attention. This paper comprehensively reviews the research progress, controversies,challenges and future research directions of neoadjuvant immunotherapy (mainly immune checkpoint inhibitors) in colorectal cancer.
Humans
;
Neoadjuvant Therapy/methods*
;
Colorectal Neoplasms/drug therapy*
;
Colonic Neoplasms/pathology*
;
Immunotherapy/methods*
;
DNA Mismatch Repair
;
Microsatellite Instability
6.Molecular mechanism and treatment strategy of colorectal cancer peritoneal metastasis.
Wen Qin LUO ; Li YE ; Guo Xiang CAI
Chinese Journal of Gastrointestinal Surgery 2023;26(5):423-428
Peritoneal metastatic colorectal cancer (pmCRC) is common and has been considered as the terminal stage. The theory of "seed and soil" and "oligometastasis" are the acknowledged hypotheses of pathogenesis of pmCRC. In recent years, the molecular mechanism related to pmCRC has been deeply researched. We realize that the formation of peritoneal metastasis, from detachment of cells from primary tumor to mesothelial adhesion and invasion, depends on the interplay of multiple molecules. Various components of tumor microenvironment also work as regulators in this process. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been widely used in clinical practice as an established treatment for pmCRC. Besides systemic chemotherapy, targeted and immunotherapeutic drugs are also increasingly used to improve prognosis. This article reviews the molecular mechanisms and treatment strategies related to pmCRC.
Humans
;
Colorectal Neoplasms/pathology*
;
Combined Modality Therapy
;
Peritoneal Neoplasms/secondary*
;
Hyperthermia, Induced
;
Colonic Neoplasms/therapy*
;
Rectal Neoplasms/therapy*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Prognosis
;
Cytoreduction Surgical Procedures
;
Survival Rate
;
Tumor Microenvironment
7.Recognition of the membrane anatomy-based laparoscopic assisted right hemicolectomy.
Yu Hong CHEN ; Lian Sheng LONG ; Jun Yong CHEN ; Zheng Yong XIE ; Hong Liang DING ; Li Yang CHENG
Chinese Journal of Gastrointestinal Surgery 2023;26(7):701-706
Although it has become a consensus in the field of colorectal surgery to perform radical tumor treatment and functional protection under the minimally invasive concept, there exist many controversies during clinical practice, including the concept of embryonic development of abdominal organs and membrane anatomy, the principle of membrane anatomy related to right hemicolectomy, D3 resection, and identification of the inner boundary. In this paper, we analyzed recently reported literature with high-level evidence and clinical data from the author's hospital to recognize and review the membrane anatomy-based laparoscopic assisted right hemicolectomy for right colon cancer, emphasizing the importance of priority of surgical dissection planes, vascular orientation, and full understanding of the fascial space, and proposing that the surgical planes should be dissected in the parietal-prerenal fascial space, and the incision should be 1 cm from the descending and horizontal part of the duodenum. The surgery should be performed according to a standard procedure with strict quality control. To identify the resection range of D3 dissection, it is necessary to establish a clinical, imaging, and pathological evaluation model for multiple factors or to apply indocyanine green and nano-carbon lymphatic tracer intraoperatively to guide precise lymph node dissection. We expect more high-level evidence of evidence-based medicine to prove the inner boundary of laparoscopic assisted radical right colectomy and a more rigorous consensus to be established.
Humans
;
Laparoscopy/methods*
;
Colonic Neoplasms/pathology*
;
Lymph Node Excision/methods*
;
Colectomy/methods*
;
Dissection
8.Analysis of therapeutic mechanism of Liushen Wan against colitis-associated colorectal cancer based on network pharmacology and validation in mice.
Xuefang ZHANG ; Yanhua CHEN ; Zongheng LI ; Jing SHANG ; Zeting YUAN ; Wanli DENG ; Ying LUO ; Na HAN ; Peihao YIN ; Jun YIN
Journal of Southern Medical University 2023;43(7):1051-1062
OBJECTIVE:
To explore the therapeutic mechanism of Liushen Wan (LSW) against colitis-associated colorectal cancer (CAC) by network pharmacology.
METHODS:
TCMSP, BATMAN-TCM, CNKI, PubMed, Genecards, OMIM, and TTD databases were used to obtain the related targets of LSW and CAC. The common targets of LSW and CAC were obtained using Venny online website. The PPI network was constructed using Cytoscape 3.8.2 to screen the core targets of LSW in the treatment of CAC. GO and KEGG enrichment analysis were conducted using DAVID database. The therapeutic effect of LSW on CAC was evaluated in a C57BL/6J mouse model of AOM/DSS-induced CAC by observing the changes in body weight, disease activity index, colon length, and size and number of the tumor. HE staining and RT-qPCR were used to analyze the effect of LSW on inflammatory mediators. Immunohistochemistry and TUNEL staining were used to evaluate the effect of LSW on the proliferation and apoptosis of AOM/DSS-treated colon tumor cells. Immunohistochemistry and Western blotting were used to detect the effects of LSW on the expression of TLR4 proteins in CAC mice.
RESULTS:
Network pharmacology analysis identified 69 common targets of LSW and CAC, and 33 hub targets were screened in the PPI network. KEGG pathway enrichment analysis suggested that the effect of LSW on CAC was mediated by the Toll-like receptor signaling pathway. In the mouse model of AOM/DSS-induced CAC, LSW significantly inhibited colitis-associated tumorigenesis, reduced tumor number and tumor load (P < 0.05), obviously improved histopathological changes in the colon, downregulated the mRNA levels of proinflammatory cytokines, and inhibited the proliferation (P < 0.01) and promoted apoptosis of colon tumor cells (P < 0.001). LSW also significantly decreased TLR4 protein expression in the colon tissue (P < 0.05).
CONCLUSION
LSW can inhibit CAC in mice possibly by regulating the expression of TLR4 to reduce intestinal inflammation, inhibit colon tumor cell proliferation and promote their apoptosis.
Mice
;
Animals
;
Toll-Like Receptor 4
;
Colitis-Associated Neoplasms
;
Network Pharmacology
;
Mice, Inbred C57BL
;
Colonic Neoplasms/pathology*
9.Development and validation of a prognostic prediction model for patients with stage Ⅰ to Ⅲ colon cancer incorporating high-risk pathological features.
K X LI ; Q B WU ; F Q ZHAO ; J L ZHANG ; S L LUO ; S D HU ; B WU ; H L LI ; G L LIN ; H Z QIU ; J Y LU ; L XU ; Z WANG ; X H DU ; L KANG ; X WANG ; Z Q WANG ; Q LIU ; Y XIAO
Chinese Journal of Surgery 2023;61(9):753-759
Objective: To examine a predictive model that incorporating high risk pathological factors for the prognosis of stage Ⅰ to Ⅲ colon cancer. Methods: This study retrospectively collected clinicopathological information and survival outcomes of stage Ⅰ~Ⅲ colon cancer patients who underwent curative surgery in 7 tertiary hospitals in China from January 1, 2016 to December 31, 2017. A total of 1 650 patients were enrolled, aged (M(IQR)) 62 (18) years (range: 14 to 100). There were 963 males and 687 females. The median follow-up period was 51 months. The Cox proportional hazardous regression model was utilized to select high-risk pathological factors, establish the nomogram and scoring system. The Bootstrap resampling method was utilized for internal validation of the model, the concordance index (C-index) was used to assess discrimination and calibration curves were presented to assess model calibration. The Kaplan-Meier method was used to plot survival curves after risk grouping, and Cox regression was used to compare disease-free survival between subgroups. Results: Age (HR=1.020, 95%CI: 1.008 to 1.033, P=0.001), T stage (T3:HR=1.995,95%CI:1.062 to 3.750,P=0.032;T4:HR=4.196, 95%CI: 2.188 to 8.045, P<0.01), N stage (N1: HR=1.834, 95%CI: 1.307 to 2.574, P<0.01; N2: HR=3.970, 95%CI: 2.724 to 5.787, P<0.01) and number of lymph nodes examined (≥36: HR=0.438, 95%CI: 0.242 to 0.790, P=0.006) were independently associated with disease-free survival. The C-index of the scoring model (model 1) based on age, T stage, N stage, and dichotomous variables of the lymph nodes examined (<12 and ≥12) was 0.723, and the C-index of the scoring model (model 2) based on age, T stage, N stage, and multi-categorical variables of the lymph nodes examined (<12, 12 to <24, 24 to <36, and ≥36) was 0.726. A scoring system was established based on age, T stage, N stage, and multi-categorical variables of lymph nodes examined, the 3-year DFS of the low-risk (≤1), middle-risk (2 to 4) and high-risk (≥5) group were 96.3% (n=711), 89.0% (n=626) and 71.4% (n=313), respectively. Statistically significant difference was observed among groups (P<0.01). Conclusions: The number of lymph nodes examined was an independent prognostic factor for disease-free survival after curative surgery in patients with stage Ⅰ to Ⅲ colon cancer. Incorporating the number of lymph nodes examined as a multi-categorical variable into the T and N staging system could improve prognostic predictive validity.
Male
;
Female
;
Humans
;
Prognosis
;
Neoplasm Staging
;
Retrospective Studies
;
Nomograms
;
Lymph Nodes/pathology*
;
Risk Factors
;
Colonic Neoplasms/surgery*
10.The efficacy of chemotherapy re-challenge in third-line setting for metastatic colorectal cancer patients: a real-world study.
Jing Jing DUAN ; Tao NING ; Ming BAI ; Le ZHANG ; Hong Li LI ; Rui LIU ; Shao Hua GE ; Xia WANG ; Yu Chong YANG ; Zhi JI ; Fei Xue WANG ; Yan Sha SUN ; Yi BA ; Ting DENG
Chinese Journal of Oncology 2023;45(11):967-972
Objective: To explore the efficacy of chemotherapy re-challenge in the third-line setting for patients with metastatic colorectal cancer (mCRC) in the real world. Methods: The clinicopathological data, treatment information, recent treatment efficacy, adverse events and survival data of mCRC patients who had disease progression after treatment with oxaliplatin-based and/or irinotecan-based chemotherapy and received third-line chemotherapy re-challenge from January 2013 to December 2020 at Tianjin Medical University Cancer Institute and Hospital were retrospectively collected. Survival curves were plotted with the Kaplan-Meier method, and the Cox proportional hazard model was used to analyze the prognostic factors. Results: A total of 95 mCRC patients were included. Among them, 32 patients (33.7%) received chemotherapy alone and 63 patients (66.3%) received chemotherapy combined with targeted drugs. Eighty-three patients were treated with dual-drug chemotherapy (87.4%), including oxaliplatin re-challenge in 35 patients and irinotecan re-challenge in 48 patients. The remaining 12 patients were treated with triplet chemotherapy regimens (12.6%). Among them, as 5 patients had sequential application of oxaliplatin and irinotecan in front-line treatments, their third-line therapy re-challenged both oxaliplatin and irinotecan; 7 patients only had oxaliplatin prescription before, and these patients re-challenged oxaliplatin in the third-line treatment. The overall response rate (ORR) and disease control rate (DCR) reached 8.6% (8/93) and 61.3% (57/93), respectively. The median progression free survival (mPFS) and median overall survival (mOS) were 4.9 months and 13.0 months, respectively. The most common adverse events were leukopenia (34.7%) and neutropenia (34.7%), followed by gastrointestinal adverse reactions such as nausea (32.6%) and vomiting (31.6%). Grade 3-4 adverse events were mostly hematological toxicity. Cox multivariate analysis showed that gender (HR=1.609, 95% CI: 1.016-2.548) and the PFS of front-line treatments (HR=0.598, 95% CI: 0.378-0.947) were independent prognostic factors. Conclusion: The results suggested that it is safe and effective for mCRC patients to choose third-line chemotherapy re-challenge, especially for patients with a PFS of more than one year in front-line treatments.
Humans
;
Irinotecan/therapeutic use*
;
Oxaliplatin/therapeutic use*
;
Colorectal Neoplasms/pathology*
;
Retrospective Studies
;
Fluorouracil
;
Colonic Neoplasms/chemically induced*
;
Rectal Neoplasms/drug therapy*
;
Antineoplastic Combined Chemotherapy Protocols/adverse effects*
;
Camptothecin/adverse effects*

Result Analysis
Print
Save
E-mail