1.Bidirectional regulation of distal colon motility in rats with electroacupuncture of different intensities at "Tianshu" (ST25).
Tong LI ; Xiaoyu LIU ; Xiaoyu WANG ; Min LUO ; Zhiyun ZHANG ; Yangshuai SU ; Xianghong JING
Chinese Acupuncture & Moxibustion 2025;45(4):460-472
OBJECTIVE:
To observe the distribution characteristics of sensitization areas on the body surface in the rat models with functional constipation and diarrhea, explore the regulatory patterns of electroacupuncture (EA) of different intensities at "Tianshu" (ST25) on distal colon motility, and clarify the roles of the neurons of different subtypes in the enteric nervous system (ENS) displayed in the regulatory effect.
METHODS:
Of 90 SD male rats of SPF grade, 15 rats were randomized into a normal group, a constipation group and a diarrhea group, 5 rats in each one. The stool form and fecal water content, as well as the distribution of the Evans blue (EB) extravasation on the body surface after the intravenous injection with EB on the tails were observed. Eighteen rats were randomized into a normal +2 mA group, a normal +4 mA group and a normal + 6 mA group, 6 rats in each one. Using physiological signal acquisition system, the area under the curve and the average amplitude of colon peristalsis were recorded and analyzed, and the immediate effect on distal colon peristalsis observed after EA with different intensities at "Tianshu" (ST25). Thirty rats were randomized into a normal group, a constipation group, a diarrhea group, a constipation +2 mA group, and a diarrhea +6 mA group, 6 rats in each one, so as to observe the cumulative effect on colon motility disorder in the rat models of constipation and diarrhea after EA at "Tianshu" (ST25). Twelve rats were randomized into a constipation +2 mA group and a diarrhea +6 mA group, 6 rats in each one, to observe the immediate effect on colon motility disorder in the rat models of constipation and diarrhea after EA at "Tianshu" (ST25). Fifteen rats were randomly divided into a normal group, a constipation group, a diarrhea group, a constipation +2 mA group, and a diarrhea + 6 mA group, 3 rats in each one. Using the whole-mount staining technique, the expression of vesicular acetylcholine transporter (VAChT)-positive neurons and nitric oxide synthase (nNOS)-positive neurons in ENS was detected. According to the group divisions, the functional constipation models were established by intragastric administration of loperamide hydrochloride (10 mg/kg, once daily, for consecutive 7 days), and the functional diarrhea models were prepared by intragastric administration of folium sennae decoction (10 mL/kg, once daily, for consecutive 2 days). The interventions were delivered with EA of different intensities (the electric current of 2, 4 or 6 mA) at bilateral "Tianshu" (ST25), separately, with the continuous wave and the frequency of 10 Hz used.
RESULTS:
Compared with the normal group, the fecal amount was decreased, and the fecal water content was reduced in the rats of the constipation group (P<0.001); and loose stool was presented and the fecal water content increased in rats of the diarrhea group (P<0.001). EB extravasation on the body surface happened in the region from T6 to S2 of the rats in the constipation and diarrhea groups, and it was more concentrated in the lower abdominal and the lower back regions from T10 to L3. Compared with the indexes before EA, in the normal +2 mA group and the normal +4 mA group, the areas under the curve and the average amplitude of the distal colon peristalsis were higher during EA delivery (P<0.01, P<0.05), showing a stimulatory immediate effect; and the post-effect was obtained after EA at 2 mA. Whereas, these two indexes were declined during EA in the rats of the normal +6 mA group (P<0.001), showing an inhibitory immediate effect. After many interventions with EA, when compared with those before EA, the above two indexes rose in the constipation +2 mA group (P<0.05, P<0.01), and they were dropped in the diarrhea +6 mA group (P<0.01, P<0.05). The area under the curve of the colon peristalsis in the constipation +2 mA group was higher than that of the constipation group (P<0.001), and that in the diarrhea +6 mA group was lower compared with that in the diarrhea group (P<0.001). The stimulatory effect of EA on colon motility in the constipation +2 mA group was stronger than that of the normal + 2 mA group (P<0.05), and its inhibitory effect was not different statistically in comparison between the normal +6 mA group and the diarrhea +6 mA group (P>0.05). In ENS of the distal colon, after EA at 2 mA, the proportion of VAChT-positive neurons was higher than that of the activated nNOS-positive neurons (P<0.001); and after EA at 6 mA, the activated nNOS-positive neurons were dominant (P<0.001).
CONCLUSION
In the functional constipation and diarrhea rat models, the sensitization areas on the body surface are centralized in the lower abdominal and the lower back regions of T10 to L3. Electroacupuncture at "Tianshu" (ST25) has a bidirectional regulatory effect on distal colon motility, and this effect is coordinated with the intensity of electroacupuncture, and may be mediated by ENS neurons of different subtypes.
Animals
;
Electroacupuncture
;
Male
;
Rats
;
Colon/innervation*
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Constipation/physiopathology*
;
Gastrointestinal Motility
;
Humans
;
Diarrhea/physiopathology*
2.Effects of electroacupuncture at changbing fang on autophagy of colonic cells and gut microbiota in ulcerative colitis of rats.
Huichao XU ; Tian WU ; Jianheng HAO ; Ronglin WU ; Bingbei YAN ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(5):657-669
OBJECTIVE:
To observe the effects of electroacupuncture (EA) at changbing fang (prescription for intestinal disease) on autophagy of colonic cells and gut microbiota in rats with ulcerative colitis (UC), and to explore the mechanism of EA in the treatment of UC.
METHODS:
Thirty-two SD male rats were randomly divided into a control group, a model group, an EA group and a sham-EA group, with 8 rats in each group. Except the control group, the UC rat model was established by free drinking of 5% dextran sulfate sodium solution for 7 days in the other groups. In the EA group, changbing fang was adopted, in which, EA was applied at "Tianshu" (ST25) and "Shangjuxu" (ST37), at disperse-dense wave and frequency of 10 Hz/50 Hz, for 20 min in each intervention. In the sham-EA group, shallow transcutaneous puncture was performed at the sites, 5 mm away from the points as the EA group, with the same parameters as the EA group. The intervention was delivered once daily for 3 consecutive days. The body weight was measured daily and the disease activity index (DAI) score was calculated before and after intervention. After intervention completion, the colon length was measured. Using HE staining, the colon morphology was observed and the score of colonic pathology was assessed. With ELISA adopted, the contents of tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-2 and IL-10 in the serum of the rats were detected. The ultrastructure of the colon tissue was observed under electron microscopy. Using Western blotting, the protein expression was detected for microtubule-associated protein 1 light chain 3 (LC3)Ⅱ, LC3Ⅰ, autophagy-related genes (ATG) 5, ATG12, sequestosome 1 (p62), phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-AKT), protein kinase B (AKT), and phosphorylated mammalian target of rapamycin (p-mTOR), mammalian target of rapamycin (mTOR) in the colon tissue. The mRNA expression of PI3K, AKT and m-TOR in the colon tissue was detected by real-time fluorescence quantitative PCR. The 16S rRNA gene sequencing was used to analyze the structure of gut flora in the feces of rats.
RESULTS:
From day 1 to day 7, compared with the control group, the body weight decreased in the model group, EA group, and SEA group (P<0.05, P<0.01). From day 9 to day 10, the EA group showed an increase in body weight compared with the model group and SEA group (P<0.05, P<0.01). Before intervention, the DAI score in the model group, EA group, and SEA group was higher than the score of the control group, respectively (P<0.01). After intervention, the DAI score in the EA group was reduced compared with the model group and SEA group (P<0.01). Compared with the control group, in the model group, the colon length of rats was shorter (P<0.01); it showed the distorted crypts, thinner mucosal layer, reduced goblet cells, inflammatory cell infiltration and the disarranged histological structure; and the pathological score of the colon tissue increased (P<0.01); the serum contents of TNF-α and IL-1β increased (P<0.01), and those of IL-2 and IL-10 decreased (P<0.01). The structure of colon epithelial cells was disarranged, with cilia pelt off, and a large number of vacuoles in the cytoplasm; the mitochondria were swollen, with unclear structure and cristae partially disappeared; and few autophagosomes were observed. The value of LC3Ⅱ/LC3Ⅰand the protein expression of ATG5 and ATG12 in the colon tissues were reduced (P<0.01), the protein expression of p62 and PI3K, and the values of p-AKT/AKT, and p-mTOR/mTOR increased (P<0.01), and mRNA expression of PI3K, AKT and mTOR was elevated (P<0.01). The indexes of Chao1, Ace and Shannon decreased (P<0.01). At the phylum level, the relative abundance of Firmicutes decreased (P<0.05), that of Bacteroidetes and Proteobacteria increased (P<0.05, P<0.01). At the genus level, the relevant abundance of Lactobacillus decreased (P<0.05), while that of Lachnospiraceae_NK4A136_group and Phascolarctobacterium increased (P<0.01, P<0.05 ). Compared with the model group and SEA group, in the EA group, the colon length increased (P<0.01), the infiltration of inflammatory cells was reduced, the arrangement of intestinal epithelial cells was arranged regularly, with a small amount of shedding, and the pathological score of the colon tissue decreased (P<0.01). The serum contents of TNF-α and IL-1β decreased (P<0.01), and those of IL-2 and IL-10 increased (P<0.01). The colonic epithelial cells were arranged relatively, the morphology of organelles was basically normal, and autophagosomes were visible. The value of LC3Ⅱ/LC3Ⅰand the protein expression of ATG5 and ATG12 in colon tissue increased (P<0.01, P<0.05), the protein expression of p62 and PI3K, and the values of p-AKT/AKT, and p-mTOR/mTOR decreased (P<0.01); and mRNA expression of PI3K, AKT, m-TOR was reduced (P<0.01). The indexes of Chao1, Ace and Shannon increased (P<0.01). At the phylum level, the relative abundance of Firmicutes increased (P<0.01), while that of Bacteroidetes decreased (P<0.01). At the genus level, the relative abundance of Lactobacillus increased (P<0.05), whereas that of Lachnospiraceae_NK4A136_group decreased (P<0.01). When compared with the model group, the relative abundance of Proteobacteria decreased (P<0.05), and that of Phascolarctobacterium was reduced (P<0.05) in the EA group.
CONCLUSION
EA at changbingfang alleviates UC symptoms probably through inhibiting the PI3K/AKT/mTOR signaling pathway to regulate colonic autophagy and improve the intestinal flora.
Animals
;
Electroacupuncture
;
Colitis, Ulcerative/metabolism*
;
Male
;
Rats
;
Gastrointestinal Microbiome
;
Rats, Sprague-Dawley
;
Colon/metabolism*
;
Humans
;
Autophagy
;
Acupuncture Points
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-10/genetics*
3.Effect and mechanism of alkaloids from Portulacae Herba on ulcerative colitis in mice based on TLR4/MyD88/NF-κB signaling pathway.
Jia-Hui ZHENG ; Ying-Ying SONG ; Tian-Ci ZHANG ; Wen-Ting WANG ; Zhi-Ping YANG ; Jin-Xia AI
China Journal of Chinese Materia Medica 2025;50(4):874-881
This study investigated the functions and regulatory mechanism of Portulacae Herba and its chemical components on the Toll-like receptor 4(TLR4)/myeloid differentiation primary response 88(MyD88)/nuclear factor kappa B(NF-κB) inflammatory signaling pathway in the colon tissue of mice with dextran sodium sulfate(DSS)-induced ulcerative colitis(UC). A total of 35 mice were randomly divided into groups, including a blank group, a model group, a mesalazine group(0. 5 g·kg~(-1)), and low, medium,and high dose alkaloids from Portulacae Herba groups(9, 18, 36 mg·kg~(-1)), and a combination treatment group, with 5 mice in each group. The blank group was given purified water, while the other groups were continuously given a 3% DSS solution for 7 days to induce the UC model. From day 8 onwards, the treatment group received oral gavage according to the prescribed doses for 14 days. The overall condition, body weight, stool characteristics, and presence of blood in the stool were recorded daily. After the experiment, the disease activity index(DAI) was assessed for each group, and colon length was measured. Histopathological changes in colon tissue were examined using hematoxylin-eosin(HE) staining. The levels of pro-inflammatory cytokines, tumor necrosis factor-α(TNF-α),and interleukin-1β( IL-1β) in serum were measured by enzyme-linked immunosorbent assay( ELISA). The protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were measured using Western blot and quantitative real-time PCR(qPCR).Compared to the blank group, the model group showed a significant decrease in body weight, a notable increase in DAI scores, a significant shortening of colon length, and evident histopathological damage. The levels of inflammatory cytokines TNF-α and IL-1β in the serum were significantly elevated, and the protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were significantly up-regulated. In contrast, the alkaloids from Portulacae Herba treatment groups significantly improved symptoms and reduced body weight loss in mice, decreased DAI scores, alleviated colon shortening, lowered serum levels of TNF-α and IL-1β,significantly down-regulated the expression levels of TLR4, MyD88, and NF-κB proteins and genes in colon tissue, as well as reduced histopathological damage. Therefore, the study suggests that alkaloids from Portulacae Herba can alleviate intestinal inflammation damage in DSS-induced UC mice, with its mechanism involving the TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Colitis, Ulcerative/immunology*
;
Toll-Like Receptor 4/immunology*
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Male
;
Alkaloids/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Female
;
Colon/metabolism*
;
Disease Models, Animal
4.Angelicae Dahuricae Radix polysaccharides treat ulcerative colitis in mice by regulating gut microbiota and metabolism.
Feng XU ; Lei ZHU ; Ya-Nan LI ; Cheng CHENG ; Yuan CUI ; Yi-Heng TONG ; Jing-Yi HU ; Hong SHEN
China Journal of Chinese Materia Medica 2025;50(4):896-907
This study employed 16S r RNA gene high-throughput sequencing and metabolomics to explore the mechanism of Angelicae Dahuricae Radix polysaccharides(RP) in the treatment of ulcerative colitis(UC). A mouse model of UC was induced with 2. 5% dextran sulfate sodium. The therapeutic effects of RP on UC in mice were evaluated based on changes in body weight, disease activity index( DAI), and colon length, as well as pathological changes. RT-qPCR was performed to assess the m RNA levels of interleukin(IL)-6, IL-1β, tumor necrosis factor(TNF)-α, myeloperoxidase(MPO), mucin 2(Muc2), Occludin, Claudin2, and ZO-1 in the mouse colon tissue. ELISA was employed to measure the expression of IL-1β and TNF-α in the colon tissue. The intestinal permeability of mice was evaluated by the fluorescent dye permeability assay. Immunohistochemistry was employed to detect the expression of Muc2 and occludin in the colon tissue. Changes in gut microbiota and metabolites were analyzed by 16S r RNA sequencing and ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry( UPLC-Q-Exactive Plus Orbitrap MS), respectively. The results indicated that low-dose RP alleviated general symptoms, reduced colonic inflammation and intestinal permeability, and promoted Muc2 secretion and tight junction protein expression in UC mice. In addition, low-dose RP increased gut microbiota diversity in UC mice and decreased the relative abundance of harmful bacteria such as Ochrobactrum and Streptococcus. Twenty-seven differential metabolites were identified in feces, and low-dose RP restored the levels of disturbed metabolites. Notably, arginine and proline metabolism were the most significantly altered amino acid metabolic pathways following lowdose RP intervention. In conclusion, RP can ameliorate general symptoms, inhibit colonic inflammation, and maintain intestinal mucosal barrier integrity in UC mice by modulating gut microbiota composition and arginine and proline metabolism.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Colitis, Ulcerative/genetics*
;
Mice
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Polysaccharides/administration & dosage*
;
Angelica/chemistry*
;
Humans
;
Colon/metabolism*
;
Disease Models, Animal
;
Mucin-2/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
6.Mechanism of Gegen Qinlian Decoction in treatment of ulcerative colitis through affecting bile acid synthesis.
Yi-Xuan SUN ; Jia-Li FAN ; Jing-Jing WU ; Li-Juan CHEN ; Jiang-Hua HE ; Wen-Juan XU ; Ling DONG
China Journal of Chinese Materia Medica 2025;50(10):2769-2777
Gegen Qinlian Decoction(GQD) is a classic prescription for the clinical treatment of ulcerative colitis(UC). This study, based on the differences in efficacy observed in UC mice under different level of bile acids treated with GQD, aims to clarify the impact of bile acids on UC and its therapeutic effects. It further investigates the expression of bile acid receptors in the liver of UC mice, and preliminarily reveals the mechanism through which GQD affects bile acid synthesis in the treatment of UC. A UC mouse model was established using dextran sulfate sodium(DSS) induction. The efficacy of GQD was evaluated by assessing the general condition, disease activity index(DAI) score, colon length, and histopathological changes in colon tissue via hematoxylin and eosin(HE) staining. ELISA and Western blot were used to evaluate the inflammatory response in colon tissue. The total bile acid(TBA) level and liver damage were quantified using an automatic biochemistry analyzer. The expression levels of bile acid receptors and bile acid synthetases in liver tissue were detected by Western blot and RT-qPCR. The results showed that compared with the model group, GQD treatment significantly improved the DAI score, colon shortening, and histopathological damage in UC mice. The levels of pro-inflammatory factors TNF-α and IL-6 in the colon were significantly reduced. Serum TBA levels were significantly decreased, while alkaline phosphatase(ALP) levels significantly increased. After administration of cholic acid(CA), UC symptoms in the CA + GQD group were significantly aggravated compared with the GQD group. The DAI score, degree of weight loss, colon injury, serum TBA, and liver injury markers all increased significantly. However, compared with the CA group, the CA + GQD group showed a marked reduction in TBA levels and a significant improvement in UC-related symptoms, indicating that GQD can alleviate UC damage exacerbated by CA. Further investigation into the expression of bile acid receptors and synthetases in the liver showed that under GQD treatment, the expression of farnesoid X receptor(FXR) and small heterodimer partner(SHP) significantly increased, while the expression of G protein-coupled receptor 5(TGR5) and cholesterol 7α-hydroxylase(Cyp7A1) significantly decreased. These findings suggest that GQD may affect bile acid receptors and synthetases, inhibiting bile acid synthesis through the FXR/SHP pathway to treat UC.
Animals
;
Colitis, Ulcerative/genetics*
;
Bile Acids and Salts/biosynthesis*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Humans
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Colon/metabolism*
;
Disease Models, Animal
;
Liver/metabolism*
;
Mice, Inbred C57BL
7.Effect of Hesperidin on Chronic Unpredictable Mild Stress-Related Depression in Rats through Gut-Brain Axis Pathway.
Hui-Qing LIANG ; Shao-Dong CHEN ; Yu-Jie WANG ; Xiao-Ting ZHENG ; Yao-Yu LIU ; Zhen-Ying GUO ; Chun-Fang ZHANG ; Hong-Li ZHUANG ; Si-Jie CHENG ; Xiao-Hong GU
Chinese journal of integrative medicine 2025;31(10):908-917
OBJECTIVES:
To determine the pharmacological impact of hesperidin, the main component of Citri Reticulatae Pericarpium, on depressive behavior and elucidate the mechanism by which hesperidin treats depression, focusing on the gut-brain axis.
METHODS:
Fifty-four Sprague Dawley male rats were randomly allocated to 6 groups using a random number table, including control, model, hesperidin, probiotics, fluoxetine, and Citri Reticulatae Pericarpium groups. Except for the control group, rats in the remaining 5 groups were challenged with chronic unpredictable mild stress (CUMS) for 21 days and housed in single cages. The sucrose preference test (SPT), immobility time in the forced swim test (FST), and number in the open field test (OFT) were performed to measure the behavioral changes in the rats. Enzyme-linked immunosorbent assay was used to determine the levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) in brain tissue, and the histopathology was performed to evaluate the changes of colon tissue, together with sequencing of the V3-V4 regions of 16S rRNA gene on feces to explore the changes of intestinal flora in the rats.
RESULTS:
Compared to the control group, the rats in the model group showed notable reductions in body weight, SPF, and number in OFT (P<0.01). Hesperidin was found to ameliorate depression induced by CUMS, as seen by improvements in body weight, SPT, immobility time in FST, and number in OFT (P<0.05 or P<0.01). Regarding neurotransmitters, it was found that at a dose of 50 mg/kg hesperidin treatment upregulated the levels of 5-HT and BDNF in depressed rats (P<0.05). Compared to the control group, the colon tissue of the model group exhibited greater inflammatory cell infiltration, with markedly reduced numbers of goblet cells and crypts and were significantly improved following treatment with hesperidin. Simultaneously, the administration of hesperidin demonstrated a positive impact on the gut microbiome of rats treated with CUMS, such as Shannon index increased and Simpson index decreased (P<0.01), while the abundance of Pseudomonadota and Bacteroidota increased in the hesperidin-treated group (P<0.05).
CONCLUSION
The mechanism responsible for the beneficial effects of hesperidin on depressive behavior in rats may be related to inhibition of the expressions of BDNF and 5-HT and preservation of the gut microbiota.
Animals
;
Hesperidin/therapeutic use*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Male
;
Stress, Psychological/drug therapy*
;
Brain/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Serotonin/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Behavior, Animal/drug effects*
;
Rats
;
Brain-Gut Axis/drug effects*
;
Chronic Disease
;
Colon/drug effects*
8.Colon Dialysis with Yishen Decoction Improves Autophagy Disorder in Intestinal Mucosal Epithelial Cells of Chronic Renal Failure by Regulating SIRT1 Pathway.
Yan-Jun FAN ; Jing-Ai FANG ; Su-Fen LI ; Ting LIU ; Wen-Yuan LIU ; Ya-Ling HU ; Rui-Hua WANG ; Hui LI ; Da-Lin SUN ; Guang ZHANG ; Zi-Yuan ZHANG
Chinese journal of integrative medicine 2025;31(10):899-907
OBJECTIVE:
To explore the mechanism of colon dialysis with Yishen Decoction (YS) in improving the autophagy disorder of intestinal epithelial cells in chronic renal failure (CRF) in vivo and in vitro.
METHODS:
Thirty male SD rats were randomly divided into normal, CRF, and colonic dialysis with YS groups by a random number table method (n=10). The CRF model was established by orally gavage of adenine 200 mg/(kg•d) for 4 weeks. CRF rats in the YS group were treated with colonic dialysis using YS 20 g/(kg•d) for 14 consecutive days. The serum creatinine (SCr) and urea nitrogen (BUN) levels were detected by enzyme-linked immunosorbent assay. Pathological changes of kidney and colon tissues were observed by hematoxylin and eosin staining. Autophagosome changes in colonic epithelial cells was observed with electron microscopy. In vitro experiments, human colon cancer epithelial cells (T84) were cultured and divided into normal, urea model (74U), YS colon dialysis, autophagy activator rapamycin (Ra), autophagy inhibitor 3-methyladenine (3-MA), and SIRT1 activator resveratrol (Re) groups. RT-PCR and Western blot were used to detect the mRNA and protein expressions of zonula occludens-1 (ZO-1), Claudin-1, silent information regulator sirtuin 1 (SIRT1), LC3, and Beclin-1 both in vitro and in vivo.
RESULTS:
Colonic dialysis with YS decreased SCr and BUN levels in CRF rats (P<0.05), and alleviated the pathological changes of renal and colon tissues. Expressions of SIRT1, ZO-1, Claudin-1, Beclin-1, and LC3II/I were increased in the YS group compared with the CRF group in vivo (P<0.05). In in vitro study, compared with normal group, the expressions of SIRT1, ZO-1, and Claudin-1 were decreased, and expressions of Beclin-1, and LC3II/I were increased in the 74U group (P<0.05). Compared with the 74U group, expressions of SIRT1, ZO-1, and Claudin-1 were increased, whereas Beclin-1, and LC3II/I were decreased in the YS group (P<0.05). The treatment of 3-MA and rapamycin regulated autophagy and the expression of SIRT1. SIRT1 activator intervention up-regulated autophagy as well as the expressions of ZO-1 and Claudin-1 compared with the 74U group (P<0.05).
CONCLUSION
Colonic dialysis with YS could improve autophagy disorder and repair CRF intestinal mucosal barrier injury by regulating SIRT1 expression in intestinal epithelial cells.
Animals
;
Sirtuin 1/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Autophagy/drug effects*
;
Male
;
Intestinal Mucosa/drug effects*
;
Rats, Sprague-Dawley
;
Epithelial Cells/metabolism*
;
Colon/drug effects*
;
Humans
;
Kidney Failure, Chronic/drug therapy*
;
Signal Transduction/drug effects*
;
Renal Dialysis
;
Rats
;
Kidney/drug effects*
9.Promising protective treatment potential of endophytic bacterium Rhizobium aegyptiacum for ulcerative colitis in rats.
Engy ELEKHNAWY ; Duaa ELIWA ; Sebaey MAHGOUB ; Sameh MAGDELDIN ; Ehssan MOGLAD ; Sarah IBRAHIM ; Asmaa Ramadan AZZAM ; Rehab AHMED ; Walaa A NEGM
Journal of Zhejiang University. Science. B 2025;26(3):286-301
Ulcerative colitis (UC) is an inflammatory condition of the intestine, resulting from an increase in oxidative stress and pro-inflammatory mediators. In this study, the extract of endophytic bacterium Rhizobium aegyptiacum was prepared for the first time using liquid chromatography-mass spectrometry (LC-MS). In addition, also for the first time, the protective potential of R. aegyptiacum was revealed using an in vivo rat model of UC. The animals were grouped into four categories: normal control (group I), R. aegyptiacum (group II), acetic acid (AA)-induced UC (group III), and R. aegyptiacum-treated AA-induced UC (group IV). In group IV, R. aegyptiacum was administered at 0.2 mg/kg daily for one week before and two weeks after the induction of UC. After sacrificing the rats on the last day of the experiment, colon tissues were collected and subjected to histological, immunohistochemical, and biochemical investigations. There was a remarkable improvement in the histological findings of the colon tissues in group IV, as revealed by hematoxylin and eosin (H&E) staining, Masson's trichrome staining, and periodic acid-Schiff (PAS) staining. Normal mucosal surfaces covered with a straight, intact, and thin brush border were revealed. Goblet cells appeared magenta in color, and there was a significant decrease in the distribution of collagen fibers in the mucosa and submucosal connective tissues. All these findings were comparable to the respective characteristics of the control group. Regarding cyclooxygenase-2 (COX-2) immunostaining, a weak immune reaction was shown in most cells. Moreover, the colon tissues were examined using a scanning electron microscope, which confirmed the results of histological assessment. A regular polygonal unit pattern was seen with crypt orifices of different sizes and numerous goblet cells. Furthermore, the levels of catalase (CAT), myeloperoxidase (MPO), nitric oxide (NO), interleukin-6 (IL-6), and interlukin-1β (IL-1β) were determined in the colonic tissues of the different groups using colorimetric assay and enzyme-linked immunosorbent assay (ELISA). In comparison with group III, group IV exhibited a significant rise (P<0.05) in the CAT level but a substantial decline (P<0.05) in the NO, MPO, and inflammatory cytokine (IL-6 and IL-1β) levels. Based on reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the tumor necrosis factor-α (TNF-α) gene expression was upregulated in group III, which was significantly downregulated (P<0.05) by treatment with R. aegyptiacum in group IV. On the contrary, the heme oxygenase-1 (HO-1) gene was substantially upregulated in group IV. Our findings imply that the oral consumption of R. aegyptiacum ameliorates AA-induced UC in rats by restoring and reestablishing the mucosal integrity, in addition to its anti-oxidant and anti-inflammatory effects. Accordingly, R. aegyptiacum is potentially effective and beneficial in human UC therapy, which needs to be further investigated in future work.
Animals
;
Colitis, Ulcerative/prevention & control*
;
Rats
;
Male
;
Rhizobium
;
Disease Models, Animal
;
Colon/pathology*
;
Rats, Sprague-Dawley
;
Oxidative Stress
;
Cyclooxygenase 2/metabolism*
10.Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production.
Ya-Jie CAI ; Jian-Hang LAN ; Shuo LI ; Yue-Ning FENG ; Fang-Hong LI ; Meng-Yu GUO ; Run-Ping LIU
Journal of Integrative Medicine 2025;23(4):429-444
OBJECTIVE:
Ulcerative colitis is closely associated with intestinal stem cell (ISC) loss and impaired intestinal mucus barrier. Sinisan (SNS), a compound Chinese herbal medicine, has a long history in the treatment of intestinal dysfunction, yet whether SNS can relieve acute experimental colitis by modulating ISC proliferation and secretory cell differentiation has not been studied. Our study tested the effect of SNS against acute colitis and focused on the mechanisms involving intestinal barrier recovery.
METHODS:
Network pharmacology analysis and blood entry component analysis of SNS were used to explore the underlying mechanism by which SNS affects the acute dextran sulfate sodium (DSS)-induced murine colitis model. RNA-sequencing was used to demonstrate the mechanism. Further, reverse transcription-quantitative polymerase chain reaction, immunofluorescence staining, and alcian blue and periodic acid-Schiff staining were performed in vivo and in the colonic organoids to investigate the cell lineage differentiation-related mechanism of SNS. Furthermore, potential active ingredients from SNS were predicted by network pharmacology analysis.
RESULTS:
SNS dramatically suppressed DSS-induced acute colonic inflammation in mice. RNA-sequencing analysis revealed downregulation of inflammation and apoptosis-related genes, and upregulation of lipid metabolism and proliferation-related genes, such as Irf7, Pparα, Clspn and Hspa5. Additionally, ISC renewal and intestinal secretory cell lineage commitment were significantly promoted by SNS both in vivo and in vitro in colonic organoids, leading to enhanced mucin expression. Furthermore, potential active ingredients from SNS that mediated inflammation, lipid metabolism, proliferation, apoptosis, stem cells and secretory cells were predicted using a network pharmacology approach.
CONCLUSION
Our study shed light on the underlying mechanism of SNS in attenuating acute colitis from the perspective of ISC renewal and secretory lineage cell differentiation, suggesting a of novel therapeutic strategy against colitis. Please cite this article as: Cai YJ, Lan JH, Li S, Feng YN, Li FH, Guo MY, et al. Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production. J Integr Med. 2025; 23(4): 429-444.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Colon/pathology*
;
Mucins/metabolism*
;
Mice, Inbred C57BL
;
Cell Differentiation/drug effects*
;
Male
;
Colitis/metabolism*
;
Cell Lineage/drug effects*
;
Dextran Sulfate
;
Stem Cells/drug effects*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail