1.Construction of NK cell-conditional Cd226 knockout mice and preliminary investigation of their role in ulcerative colitis.
Jianchun LYU ; Zichan GUO ; Yazhen WANG ; Ziyan CHEN ; Zhengxiang ZHANG ; Lihua CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):488-494
Objective To generate and characterize natural killer cell (NK cell)-conditional Cd226 gene knockout mice using Cre-loxP technology, and to explore the role of CD226 on NK cells in alleviating intestinal inflammation in a murine model of ulcerative colitis (UC). Methods NK cell-conditional Cd226 gene knockout mice were generated by crossing loxP-flanked Cd226 mice with Ncr1-Cre mice via the Cre-loxP system. Polymerase chain reaction (PCR) and agarose gel electrophoresis were used for genotyping. A UC model was established by dextran sulfate sodium (DSS) induction. Flow cytometry was performed to analyze CD226 expression levels on NK cells and the infiltration of related immune cells in colon tissues. Hematoxylin-eosin (HE) staining was performed to assess the degree of colonic inflammation. Results DNA gel electrophoresis and flow cytometry confirmed the successful generation of NK cell-specific Cd226 knockout mice. After conditional knockout of Cd226 in NK cells, inflammation in the UC mouse model was alleviated. Flow cytometry results showed a reduced proportion of NK cells in peripheral blood and the colon lamina propria, while HE staining demonstrated attenuated inflammatory responses. Conclusion Specific knockout of Cd226 in NK cells mitigates intestinal inflammation in UC mice by reducing NK cell numbers and inhibiting their pro-inflammatory functions.
Animals
;
Colitis, Ulcerative/pathology*
;
Killer Cells, Natural/metabolism*
;
Mice, Knockout
;
T Lineage-Specific Activation Antigen 1
;
Antigens, Differentiation, T-Lymphocyte/genetics*
;
Mice
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Male
2.Promising protective treatment potential of endophytic bacterium Rhizobium aegyptiacum for ulcerative colitis in rats.
Engy ELEKHNAWY ; Duaa ELIWA ; Sebaey MAHGOUB ; Sameh MAGDELDIN ; Ehssan MOGLAD ; Sarah IBRAHIM ; Asmaa Ramadan AZZAM ; Rehab AHMED ; Walaa A NEGM
Journal of Zhejiang University. Science. B 2025;26(3):286-301
Ulcerative colitis (UC) is an inflammatory condition of the intestine, resulting from an increase in oxidative stress and pro-inflammatory mediators. In this study, the extract of endophytic bacterium Rhizobium aegyptiacum was prepared for the first time using liquid chromatography-mass spectrometry (LC-MS). In addition, also for the first time, the protective potential of R. aegyptiacum was revealed using an in vivo rat model of UC. The animals were grouped into four categories: normal control (group I), R. aegyptiacum (group II), acetic acid (AA)-induced UC (group III), and R. aegyptiacum-treated AA-induced UC (group IV). In group IV, R. aegyptiacum was administered at 0.2 mg/kg daily for one week before and two weeks after the induction of UC. After sacrificing the rats on the last day of the experiment, colon tissues were collected and subjected to histological, immunohistochemical, and biochemical investigations. There was a remarkable improvement in the histological findings of the colon tissues in group IV, as revealed by hematoxylin and eosin (H&E) staining, Masson's trichrome staining, and periodic acid-Schiff (PAS) staining. Normal mucosal surfaces covered with a straight, intact, and thin brush border were revealed. Goblet cells appeared magenta in color, and there was a significant decrease in the distribution of collagen fibers in the mucosa and submucosal connective tissues. All these findings were comparable to the respective characteristics of the control group. Regarding cyclooxygenase-2 (COX-2) immunostaining, a weak immune reaction was shown in most cells. Moreover, the colon tissues were examined using a scanning electron microscope, which confirmed the results of histological assessment. A regular polygonal unit pattern was seen with crypt orifices of different sizes and numerous goblet cells. Furthermore, the levels of catalase (CAT), myeloperoxidase (MPO), nitric oxide (NO), interleukin-6 (IL-6), and interlukin-1β (IL-1β) were determined in the colonic tissues of the different groups using colorimetric assay and enzyme-linked immunosorbent assay (ELISA). In comparison with group III, group IV exhibited a significant rise (P<0.05) in the CAT level but a substantial decline (P<0.05) in the NO, MPO, and inflammatory cytokine (IL-6 and IL-1β) levels. Based on reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the tumor necrosis factor-α (TNF-α) gene expression was upregulated in group III, which was significantly downregulated (P<0.05) by treatment with R. aegyptiacum in group IV. On the contrary, the heme oxygenase-1 (HO-1) gene was substantially upregulated in group IV. Our findings imply that the oral consumption of R. aegyptiacum ameliorates AA-induced UC in rats by restoring and reestablishing the mucosal integrity, in addition to its anti-oxidant and anti-inflammatory effects. Accordingly, R. aegyptiacum is potentially effective and beneficial in human UC therapy, which needs to be further investigated in future work.
Animals
;
Colitis, Ulcerative/prevention & control*
;
Rats
;
Male
;
Rhizobium
;
Disease Models, Animal
;
Colon/pathology*
;
Rats, Sprague-Dawley
;
Oxidative Stress
;
Cyclooxygenase 2/metabolism*
3.TRPV1 participates in the protective effect of propolis on colonic tissue of ulcerative colitis.
Jing WANG ; Zhen QIAN ; Taiyu LU ; Ruirui LI ; Hui LI ; Hao ZHANG ; Li SUN ; Haihua WANG
Journal of Central South University(Medical Sciences) 2023;48(2):182-190
OBJECTIVES:
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) mainly characterized by inflammation, ulceration and erosion of colonic mucosa and submucosa. Transient receptor potential vanilloid 1 (TRPV1) is an important mediator of visceral pain and inflammatory bowel disease. This study aims to investigate the protective effect of water soluble propolis (WSP) on UC colon inflammatory tissue and the role of TRPV1.
METHODS:
Male SD rats were randomly divided into 6 groups (n=8): a normal control (NC) group, an ulcerative colitis model (UC) group, a low-WSP (L-WSP) group, a medium-WSP (M-WSP) group, a high-WSP (H-WSP) group, and a salazosulfapyridine (SASP) group. The rats in the NC group drank water freely, and the other groups drank 4% dextran sulfate sodium (DSS) solution freely for 7 d to replicate the ulcerative colitis model. Based on the successful replication of the UC, the L-WSP, M-WSP, and H-WSP groups were given 50, 100, and 200 mg/kg of water-soluble propolis by gavage for 7 d, and the SASP group was given 100 mg/kg of sulfasalazine by gavage for 7 d. The body weight of rats in each group was measured at the same time every day, the fecal traits and occult blood were observed to record the disease activity index (DAI). After intragastric administration, the animals were sacrificed after fasted 24 h. Serum and colonic tissue were collected, and the changes of MDA, IL-6 and TNF-α were detected. The pathological changes of colon tissues were observed by HE staining, and the expression of TRPV1 in colon tissues was observed by Western blotting, immunohistochemistry, and immunofluorescence.
RESULTS:
The animals in each group that drank DSS freely showed symptoms such as weight loss, decreased appetite, depressed state, and hematochezia, indicating that the model was successfully established. Compared with the NC group, DAI scores of other groups were increased (all P<0.05). MDA, IL-6, TNF-α in serum and colon tissues of the UC group were increased compared with the NC group (all P<0.01), and they were decreased after WSP and SASP treatment (all P<0.01). The results of showed that the colon tissue structure was obviously broken and inflammatory infiltration in the UC group, while the H-WSP group and the SASP group significantly improved the colon tissue and alleviated inflammatory infiltration. The expression of TRPV1 in colon tissues in the UC group was increased compared with the NC group (all P<0.01), and it was decreased after WSP and SASP treatment.
CONCLUSIONS
WSP can alleviate the inflammatory state of ulcerative colitis induced by DSS, which might be related to the inhibition of inflammatory factors release, and down-regulation or desensitization of TRPV1.
Animals
;
Male
;
Rats
;
Antineoplastic Agents/therapeutic use*
;
Colitis, Ulcerative/chemically induced*
;
Colon/pathology*
;
Disease Models, Animal
;
Interleukin-6/pharmacology*
;
Propolis/therapeutic use*
;
Rats, Sprague-Dawley
;
Sulfasalazine/therapeutic use*
;
TRPV Cation Channels
;
Tumor Necrosis Factor-alpha/pharmacology*
4.Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR+ ILC3.
Ming-Jun CHEN ; Yang FENG ; Lu GAO ; Ming-Xiong LIN ; Shi-da WANG ; Zhan-Qi TONG
Chinese journal of integrative medicine 2023;29(5):424-433
OBJECTIVE:
To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model.
METHODS:
The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3-, CCR6+ Nkp46- (Lti) ILC3-, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively.
RESULTS:
The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function.
CONCLUSION
CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.
Male
;
Animals
;
Mice
;
Colitis, Ulcerative/pathology*
;
Immunity, Innate
;
Butyric Acid/therapeutic use*
;
Sophora
;
Gastrointestinal Microbiome
;
Lymphocytes
;
Colon
;
Colitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
5.Progress on Regulation of NLRP3 Inflammasome by Chinese Medicine in Treatment of Ulcerative Colitis.
Chinese journal of integrative medicine 2023;29(8):750-760
Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.
Humans
;
Inflammasomes/metabolism*
;
Colitis, Ulcerative/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Medicine, Chinese Traditional
;
Quality of Life
;
Colitis
6.Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis.
Yang LIU ; Yahui DONG ; Wei SHEN ; Jiahui DU ; Quanwei SUN ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):263-278
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Platycodon
;
Colon/pathology*
;
Cytokines
;
Anti-Inflammatory Agents/therapeutic use*
;
Polysaccharides/therapeutic use*
;
Dextran Sulfate
;
Disease Models, Animal
;
Colitis/chemically induced*
;
Mice, Inbred C57BL
7.Deficiency in glutathione synthesis and reduction contributes to the pathogenesis of colitis-related liver injury.
Liangliang WANG ; Ruyue HAN ; Kaihong ZANG ; Pei YUAN ; Hongyan QIN
Journal of Central South University(Medical Sciences) 2022;47(3):271-279
OBJECTIVES:
Liver disease is the most common extra-intestinal manifestation of ulcerative colitis (UC), but the underlying pathogenesis is still not clarified. It is well accepted that the occurrence of UC-related liver disease has close correlation with immune activation, intestinal bacterial liver translocation, inflammatory cytokine storm, and the disturbance of bile acid circulation. The occurrence of UC-related liver disease makes the therapy difficult, therefor study on the pathogenesis of UC-related liver injury is of great significance for its prevention and treatment. Glutathione (GSH) shows multiple physiological activities, such as free radical scavenging, detoxification metabolism and immune defense. The synthesis and the oxidation-reduction all contribute to GSH antioxidant function. It is reported that the deficiency in hepatic GSH antioxidant function participates in multiple liver diseases, but whether it participates in the pathogenesis of UC-related liver injury is still not clear. This study aims to investigate the feature and underlying mechanism of GSH synthesis and oxidation-reduction function during the development of UC, which will provide useful information for the pathogenesis study on UC-related liver injury.
METHODS:
UC model was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS)-ethanol solution (5 mg/0.8 mL per rat, 50% ethanol) via intra-colonic administration in rats, and the samples of serum, liver, and colon tissue of rats were collected at the 3rd, 5th, and 7th days post TNBS. The severity degree of colitis was evaluated by measuring the disease activity index, colonic myeloperoxidase activity, and histopathological score, and the degree of liver injury was evaluated by histopathological score and the serum content of alanine aminotransferase. Spearman correlation analysis was also conducted between the degree of colonic lesions and index of hepatic histopathological score as well as serum aspartate aminotransferase level to clarify the correlation between liver injury and colitis. To evaluate the hepatic antioxidant function of GSH in UC rats, hepatic GSH content, enzyme activity of GSH peroxidase (GSH-Px), and GSH reductase (GR) were determined in rats at the 3rd, 5th, and 7th days post TNBS, and the protein expressions of glutamine cysteine ligase (GCL), GSH synthase, GSH-Px, and GR in the liver of UC rats were also examined by Western blotting.
RESULTS:
Compared with the control, the disease activity index, colonic myeloperoxidase activity, and histopathological score were all significantly increased at the 3rd, 5th, and 7th days post TNBS (all P<0.01), the serum aspartate aminotransferase level and hepatic histopathologic score were also obviously elevated at the 7th day post TNBS (all P<0.05). There was a significant positive correlation between the degree of liver injury and the severity of colonic lesions (P=0.000 1). Moreover, compared with the control, hepatic GSH content and the activity of GSH-Px and GR were all significantly decreased at the 3rd and 5th days post TNBS (P<0.05 or P<0.01), and the protein expressions of GCL, GSH-Px, and GR were all obviously down-regulated at the 3rd, 5th, and 7th days post TNBS (P<0.05 or P<0.01).
CONCLUSIONS
There is a significant positive correlation between the degree of liver injury and the severity of colonic lesions, and the occurrence of reduced hepatic GSH synthesis and decreased GSH reduction function is obviously earlier than that of the liver injury in UC rats. The reduced hepatic expression of enzymes that responsible for GSH synthesis and reduction may contribute to the deficiency of GSH synthesis and oxidation-reduction function, indicating that the deficiency in GSH antioxidant function may participate in the pathogenesis of UC related liver injury.
Animals
;
Antioxidants
;
Aspartate Aminotransferases
;
Colitis/chemically induced*
;
Colitis, Ulcerative/metabolism*
;
Colon/pathology*
;
Glutathione/biosynthesis*
;
Liver/metabolism*
;
Peroxidase/metabolism*
;
Rats
;
Trinitrobenzenesulfonic Acid
8.Mechanism of Shenling Baizhu Powder on treatment of ulcerative colitis based on NLRP3 inflammatory.
Yu-Hui LIU ; Zi-Ling RONG ; Hong-Yang ZHU ; Yu-Ting LI ; Yu YOU
China Journal of Chinese Materia Medica 2022;47(21):5863-5871
This study deciphered the mechanism of Shenling Baizhu Powder in treatment of mouse model of ulcerative colitis(UC) via NOD-like receptor thermoprotein domain 3(NLRP3) signaling pathway. After three days of adaptive feeding, 70 SPF-grade BALB/c mice were randomized into 7 groups: normal group, model group(dextran sodium sulfate, DSS), mesalazine group(DSS + 5-aminosalicylic acid, 5-ASA), NLRP3 inhibitor group(DSS + MCC950), and high-, medium-, and low-dose Shenling Baizhu Powder groups(DSS + high-, medium-, and low-dose Shenling Baizhu Powder), with 10 mice per group. The normal group had free access to double distilled water, and the remaining groups had free access to DSS-containing water to establish the acute UC model. Intragastric administration was started at the same time as modeling for one week. During the experiment, the general mental state and disease activity of each group of mice were recorded and scored. After the experiment, colon and serum samples were collected. The pathological changes in colon tissue were observed through hematoxylin-eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of interleukin-18(IL-18) and myeloperoxidase(MPO) in colon tissue and interleukin-1β(IL-1β) in serum. Immunofluorescence(IF) and immunohistochemistry(IHC) methods were employed to examine the expression of NLRP3 and IL-18 in colon tissue. Western blot was employed to measure the protein levels of NLRP3, apoptosis-associated speck-like protein(ASC), cystein-aspartate protease 1(caspase-1), and downstream inflammatory cytokines in colon tissue. Compared with the normal group, the modeling of UC increased the disease activity index(DAI), colon pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue(P<0.05, P<0.01). Furthermore, the modeling caused obvious pathological changes and up-regulated the expression of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.01). Compared with the model group, the administration of corresponding drugs decreased the DAI, pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue, and down-regulated the protein levels of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.05, P<0.01). According to the results of previous study and this study, we concluded that Shenling Baizhu Powder can alleviate the inflammatory response and intestinal damage of DSS-induced UC by regulating the expression of the proteins and inflammatory cytokines associated with NLRP3 signaling pathway.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Dextran Sulfate/adverse effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-18/genetics*
;
Powders
;
Colon/metabolism*
;
Caspase 1
;
Mesalamine/adverse effects*
;
Mice, Inbred BALB C
;
Disease Models, Animal
;
Cytokines/metabolism*
;
Water
;
Colitis/pathology*
9.Progress in active compounds effective on ulcerative colitis from Chinese medicines.
Si-Yu CAO ; Sheng-Jie YE ; Wei-Wei WANG ; Bing WANG ; Tong ZHANG ; Yi-Qiong PU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):81-102
Ulcerative colitis (UC), a chronic inflammatory disease affecting the colon, has a rising incidence worldwide. The known pathogenesis is multifactorial and involves genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Nowadays, the drugs for UC include 5-aminosalicylic acid, steroids, and immunosuppressants. Long-term use of these drugs, however, may cause several side effects, such as hepatic and renal toxicity, drug resistance and allergic reactions. Moreover, the use of traditional Chinese medicine (TCM) in the treatment of UC shows significantly positive effects, low recurrence rate, few side effects and other obvious advantages. This paper summarizes several kinds of active compounds used in the experimental research of anti-UC effects extracted from TCM, mainly including flavonoids, acids, terpenoids, phenols, alkaloids, quinones, and bile acids from some animal medicines. It is found that the anti-UC activities are mainly focused on targeting inflammation or oxidative stress, which is associated with increasing the levels of anti-inflammatory cytokine (IL-4, IL-10, SOD), suppressing the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-23, NF-κB, NO), reducing the activity of MPO, MDA, IFN-γ, and iNOS. This review may offer valuable reference for UC-related studies on the compounds from natural medicines.
Animals
;
Colitis, Ulcerative
;
drug therapy
;
pathology
;
Cytokines
;
metabolism
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Inflammation
;
drug therapy
;
metabolism
;
Medicine, Chinese Traditional
;
Oxidative Stress
;
drug effects
;
Phytochemicals
;
pharmacology
10.Efficacy and Safety of Adalimumab in Moderately to Severely Active Cases of Ulcerative Colitis: A Meta-Analysis of Published Placebo-Controlled Trials.
Zong Mei ZHANG ; Wei LI ; Xue Liang JIANG
Gut and Liver 2016;10(2):262-274
BACKGROUND/AIMS: To evaluate the efficacy and safety of adalimumab (ADA) in moderately to severely active ulcerative colitis (UC) patients who are unresponsive to traditional therapy. METHODS: Electronic databases, including the PubMed, Embase, and Cochrane databases, were searched to April 20, 2014. UC-related randomized controlled trials (RCTs) that compared ADA with placebo were eligible. Review Manager 5.1 was used for data analysis. RESULTS: This meta-analysis included three RCTs. ADA was considerably more effective compared with a placebo, and it increased the ratio of patients with clinical remission, clinical responses, mucosal healing and inflammatory bowel disease questionnaire responses in the induction and maintenance phases (p<0.05), as well as patients with steroid-free remission (p<0.05) during the maintenance phase. Clinical remission was achieved in a greater number of UC cases in the ADA 160/80/40 mg groups (0/2/4 week, every other week) compared with the placebo group at week 8 (p=0.006) and week 52 (p=0.0002), whereas the week 8 clinical remission rate was equivalent between the ADA 80/40 mg groups and the placebo group. Among the patients who received immunomodulators (IMM) at baseline, ADA was superior to the placebo in terms of inducing clinical remission (p=0.01). Between-group differences were not observed in terms of serious adverse events (p=0.61). CONCLUSIONS: ADA, particularly at doses of 160/80/40 mg (0/2/4 week, every other week), is effective and safe in patients with moderate-to-severe UC who are unresponsive to traditional treatment. Concomitant IMM therapy may improve the short-term therapeutic efficacy of ADA.
Adalimumab/*therapeutic use
;
Adult
;
Anti-Inflammatory Agents/*therapeutic use
;
Colitis, Ulcerative/*drug therapy/pathology
;
Female
;
Humans
;
Male
;
Middle Aged
;
Randomized Controlled Trials as Topic
;
Remission Induction/methods
;
Severity of Illness Index

Result Analysis
Print
Save
E-mail