1.Effect of moxibustion on central insulin resistance related proteins in diabetic rats with cognitive decline.
Min YE ; Aihong YUAN ; Lele ZHANG ; Hongyu XIE ; Hudie SONG ; Yinqiu FAN ; Jun YANG
Chinese Acupuncture & Moxibustion 2025;45(2):185-192
OBJECTIVE:
To investigate the effect of moxibustion on central insulin resistance related proteins of the rats suffering from diabetic cognitive decline, and analyze the underlying mechanism of moxibustion for cognition improvement.
METHODS:
Using the intraperitoneal injection of STZ combined with a high-fat diet, the rat model of diabetic cognitive decline were prepared. Twenty successfully-modeled rats were assigned randomly into a model group and a moxibustion group, 10 rats in each one. Besides, a blank group was set up with 10 rats collected. In the moxibustion group, suspending moxibustion was applied to "Baihui" (GV20), "Shenting" (GV24) and "Dazhui" (GV14) at the same time, 20 min in each intervention, once a day, and 6 interventions were delivered weekly and the duration of treatment was consecutive 4 weeks. The random blood glucose was measured using glucometer, and the learning-memory ability was detected by water maze test. HE staining was used to observe the morphology of neurons in the hippocampal tissue, real-time PCR assay was to detect mRNA expression of insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in the hippocampal tissue. The Western blot method was employed to detect the protein expression of IRS1, PI3K, AKT, phosphorylated IRS1 (p-IRS1), phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT) in the hippocampal tissue, and the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was calculated separately. The immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT was measured using immunofluorescence.
RESULTS:
Compared with the blank group, the rats of the model group exhibited higher random blood glucose (P<0.001), longer escape latency (P<0.001), severe pathological damage in the hippocampus, lower mRNA expression of IRS1, PI3K, and AKT (P<0.001), reduced ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT (P<0.001), and declined immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue (P<0.001). In comparison with the model group, for the rats of the moxibustion group, the random blood glucose decreased (P<0.05), the escape latency was shortened (P<0.01), the hippocampal pathological damage was attenuated, the mRNA expression of IRS1, PI3K and AKT increased (P<0.01), the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was elevated (P<0.01, P<0.05), and the immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue was strengthened (P<0.01, P<0.05).
CONCLUSION
In diabetic rats experiencing cognitive decline, moxibustion can enhance the learning-memory ability, which may be attributed to modulating the protein expression of IRS1, PI3K, and AKT, and their phosphorylation, activating insulin signal transduction, and reducing central insulin resistance.
Animals
;
Moxibustion
;
Insulin Resistance
;
Rats
;
Male
;
Insulin Receptor Substrate Proteins/genetics*
;
Rats, Sprague-Dawley
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cognitive Dysfunction/genetics*
;
Diabetes Mellitus, Experimental/therapy*
;
Hippocampus/metabolism*
;
Acupuncture Points
;
Phosphatidylinositol 3-Kinases/genetics*
2.Effects of electroacupuncture on cognitive impairment and mitophagy mediated by KIF5A/Miro1 pathway in Parkinson's disease mice.
Mengzhu LI ; Jiafan CHEN ; Mengxuan CHEN ; Haiyan LI ; Zhenyi ZHANG ; Da GAO ; Weicong ZENG ; Lijun ZHAO ; Meiling ZHU
Chinese Acupuncture & Moxibustion 2025;45(8):1111-1119
OBJECTIVE:
To explore the improvement effect of electroacupuncture (EA) based on Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) on cognitive impairment in mice with Parkinson's disease (PD), and to explore its regulatory mechanisms on the kinesin family member 5A (KIF5A)/mitochondrial Rho GTPase 1 (Miro1) pathway and mitophagy in prefrontal cortical neurons.
METHODS:
A total of 70 male C57BL/6J mice of clean grade were randomly divided into a normal group (12 mice), a sham operation group (12 mice), and a model pre-screening group (46 mice). Unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle was adopted to establish the PD model in the model pre-screening group. Twenty-four mice after successful modeling were randomly selected and divided into a model group and an EA group, 12 mice in each one. In the EA group, acupuncture was applied at "Shuigou" (GV26) and bilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6), ipsilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6) were connected to EA respectively, with disperse-dense wave, 5 Hz/20 Hz in frequency, 0.5 mA in current intensity, 20 min a time, 6 times a week for 30 days. Cognitive function was assessed by Y-maze and Morris water maze tests; morphology of prefrontal cortex was observed by H.E. staining; reactive oxygen species (ROS) level in prefrontal cortex was detected by fluorescence probe method; mitochondrial morphology and autophagosome ultrastructure were observed by transmission electron microscopy; the mRNA expression of tyrosine hydroxylase (TH) was detected by quantitative real-time PCR; the protein expression of TH, KIF5A, Miro1, p62, Parkin and PTEN induced kinase 1 (PINK1) was detected by Western blot.
RESULTS:
Compared with the sham operation group, both the model group and the EA group exhibited increased rotation number of per minute (P<0.001). Compared with the sham operation group, in the model group, the novel arm exploration time of Y-maze test was shortened (P<0.001), the escape latency of Morris water maze test was prolonged (P<0.05) and the platform crossing number of Morris water maze test was reduced (P<0.01); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was increased (P<0.001), and mitochondrial autophagosomes could be observed; in the prefrontal cortex, the relative expression of ROS was increased (P<0.001), the protein and mRNA expression of TH was decreased (P<0.001), the protein expression of Miro1, PINK1, Parkin was increased (P<0.001, P<0.01), the protein expression of KIF5A and p62 was decreased (P<0.001). Compared with the model group, in the EA group, the novel arm exploration time of Y-maze test was prolonged (P<0.01), the escape latency of Morris water maze test was shortened (P<0.05) and the platform crossing number of Morris water maze test was increased (P<0.05); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was decreased (P<0.001), and the number of mitochondrial autophagosomes reduced and the mitochondrial morphology was improved; in the prefrontal cortex, the relative expression of ROS was decreased (P<0.01), the protein and mRNA expression of TH was increased (P<0.001, P<0.01), the protein expression of Miro1, PINK1, Parkin was decreased (P<0.001, P<0.01, P<0.05), the protein expression of KIF5A and p62 was increased (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao electroacupuncture effectively alleviates cognitive impairment and damage of neuronal function in PD mice, its mechanism may be related to the regulation of KIF5A/Miro1 pathway, hence reducing the mitophagy in prefrontal cortical neurons.
Animals
;
Electroacupuncture
;
Male
;
Mice
;
Parkinson Disease/physiopathology*
;
Cognitive Dysfunction/psychology*
;
Kinesins/genetics*
;
Humans
;
Mitophagy
;
Mice, Inbred C57BL
;
rho GTP-Binding Proteins/genetics*
;
Mitochondria/genetics*
;
Prefrontal Cortex/metabolism*
3.Mechanism of Jiawei Xionggui Decoction in ameliorating cognitive impairment in APP/PS1 mice based on network pharmacology and metabolomics.
Jun-Bao XIANG ; Wen WEN ; Shi-Jun XU
China Journal of Chinese Materia Medica 2025;50(2):322-342
This study explored the action mechanism of Jiawei Xionggui Decoction in the treatment of Alzheimer's disease(AD) by integrating mouse brain tissue metabolomics and network pharmacology. Six-month-old amyloid precursor protein/presenilin 1(APP/PS1) mice were selected and divided into the APP/PS1 group and Jiawei Xionggui Decoction intervention group, with age-matched C57BL/6 mice serving as controls. Cognitive abilities and pathological damage in the mice were observed. Gas chromatography-mass spectrometry/mass spectrometry(GC-MS/MS) technology was utilized to analyze the metabolic profiles of mice brain tissue. Differential metabolites were screened, and relevant metabolic pathways were enriched. Network pharmacology was adopted to screen the active components of Jiawei Xionggui Decoction, so as to construct a protein-protein interaction network of its core targets for AD treatment and conduct Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of potential targets for Jiawei Xionggui Decoction in treating AD. Finally, a "metabolite-reaction-enzyme-gene" network was constructed for combined analysis of metabolomics and network pharmacology. The results showed that Jiawei Xionggui Decoction significantly reversed the trends of 18 differential metabolites involved in 15 metabolic pathways such as glyoxylate and dicarboxylate metabolism, glycine, serine, and threonine metabolism, pyruvate metabolism, alanine, aspartate, and glutamate metabolism, and tricarboxylic acid cycle(TCA) in mouse brain tissue. Furthermore, 383 core targets of Jiawei Xionggui Decoction were implicated in pathways like the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway and calcium signaling pathway. Overall analysis indicated that energy metabolism, amino acid metabolism, and fatty acid metabolism were crucial metabolic pathways for Jiawei Xionggui Decoction in treating AD. The findings suggest that Jiawei Xionggui Decoction can protect neuronal cells in mouse brain tissue, thus improving cognitive impairment.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Cognitive Dysfunction/genetics*
;
Alzheimer Disease/genetics*
;
Mice, Inbred C57BL
;
Amyloid beta-Protein Precursor/metabolism*
;
Male
;
Brain/drug effects*
;
Humans
;
Presenilin-1/metabolism*
;
Protein Interaction Maps/drug effects*
;
Mice, Transgenic
;
Disease Models, Animal
4.Congrong San ameliorates cognitive impairment and neuroinflammation in rat model of Alzheimer's disease by alleviating endoplasmic reticulum stress to inhibit NLRP3 inflammasome activation.
Yuan-Qin CAI ; Yang XIANG ; Qing-Hua LONG ; Xi WANG ; Chu-Hua ZENG
China Journal of Chinese Materia Medica 2025;50(7):1881-1888
This study aims to investigate the effect of Congrong San(CRS) on endoplasmic reticulum stress-induced neuroinflammation in the rat model of Aβ_(1-42)-induced Alzheimer's disease(AD). Sixty male Sprague-Dawley rats(2 months old) were randomized into blank(CON), model(MOD), low-dose Congrong San(L-CRS), medium-dose Congrong San(M-CRS), high-dose Congrong San(H-CRS), and memantine hydrochloride(MJG) groups. The Morris water maze test was carried out to examine the learning and memory abilities of rats in each group. Hematoxylin-eosin staining and Nissl staining were employed to observe the morphology and number of CA1 neurons in the hippocampus of rats in each group. The morphology and structure of the endoplasmic reticulum in the hippocampus were observed by transmission electron microscopy. The immunofluorescence assay was employed to detect the expression of 78 kDa glucose-regulated protein(GRP78) in the hippocampus. Western blot was employed to determine the expression of apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), GRP78, and pathway proteins including protein kinase RNA-like endoplasmic reticulum kinase(PERK), phosphorylated PERK(p-PERK), C/EBP homologous protein(CHOP), and NOD-like receptor pyrin domain-containing protein 3(NLRP3) in the rat hippocampus. Compared with the MOD group, the M-CRS and H-CRS groups showed improved learning and memory abilities, reduced neuron losses in the hippocampus, alleviated endoplasmic reticulum stress, inhibited PERK-CHOP-NLRP3 pathway, and lowered levels of IL-1β, IL-6, and tumor necrosis factor-alpha(TNF-α). The results suggest that CRS can alleviate cognitive impairment and hippocampal neuron damage and reduce neuroinflammation in AD rats by alleviating endoplasmic reticulum stress to inhibit the activation of NLRP3 inflammasomes.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Male
;
Alzheimer Disease/psychology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Disease Models, Animal
;
Hippocampus/drug effects*
;
Humans
;
Neuroinflammatory Diseases/drug therapy*
5.Caffeoylquinic acids from Erigeron breviscapus ameliorates cognitive impairment and mitochondrial dysfunction in AD by activating PINK1/Parkin-mediated mitophagy.
Yuan-Zhu PU ; Hai-Feng CHEN ; Xin-Yi WANG ; Can SU
China Journal of Chinese Materia Medica 2025;50(14):3969-3979
This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.(DsRed) ratio, the expression of phosphatidylethanolamine-modified and GFP-labeled LGG-1(PE-GFP::LGG-1)/GFP-labeled LGG-1(GFP::LGG-1), and GFP-labeled SQST-1(GFP::SQST-1) proteins were investigated in transgenic C. elegans strains. The effect of EBCQA on paralysis was further evaluated after RNA interference(RNAi)-mediated suppression of the pink-1 and pdr-1 genes in CL4176 strain. An AD rat model was established through intraperitoneal injection of D-galactose and intragastric administration of aluminum trichloride. The effects of β-nicotinamide mononucleotide(NMN) and EBCQA on learning and memory ability, neuronal morphology, mitophagy occurrence, mitophagy-related protein expression(PINK1, Parkin, Beclin 1, LC3-Ⅱ/LC3-Ⅰ, p62), and mitochondrial functions(ATP content; enzyme activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ; mitochondrial membrane potential) were investigated in this AD rat model. The results showed that EBCQA delayed paralysis onset in the CL4176 strain, reduced Aβ oligomer formation, and upregulated the mRNA expression levels of lgg-1, bec-1, pink-1, and pdr-1, while downregulating sqst-1 mRNA expression. EBCQA also enhanced ATP content, mitochondrial membrane potential, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ. Furthermore, EBCQA improved the PE-GFP::LGG-1/GFP::LGG-1 ratio, reduced GFP::SQST-1 expression, and decreased the GFP/DsRed ratio. Notably, the ability of EBCQA to delay paralysis was significantly reduced following RNAi-mediated suppression of pink-1 and pdr-1 in CL4176 strain. In AD rats, the administration of NMN or EBCQA significantly improved learning and memory, restored neuronal morphology in the hippocampus, increased autophagosome numbers, and upregulated the expression of PINK1, Parkin, Beclin 1, and the LC3-Ⅱ/LC3-Ⅰ ratio, while reducing p62 expression. Additionally, the treatment with NMN or EBCQA both elevated ATP content, mitochondrial respiratory chain complex Ⅰ, Ⅲ, and Ⅳ activities, and mitochondrial membrane potential in the hippocampus. The above findings indicate that EBCQA improves cognitive impairment and mitochondrial dysfunction in AD, possibly through activation of PINK1/Parkin-mediated mitophagy.
Animals
;
Alzheimer Disease/psychology*
;
Mitophagy/drug effects*
;
Mitochondria/genetics*
;
Caenorhabditis elegans/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Cognitive Dysfunction/physiopathology*
;
Rats
;
Protein Kinases/genetics*
;
Humans
;
Male
;
Disease Models, Animal
;
Caenorhabditis elegans Proteins/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
6.4'-O-methylbavachalcone improves vascular cognitive impairment by inhibiting neuroinflammation via EPO/Nrf2/HO-1 pathway.
Xin-Yuan ZHANG ; Chen WANG ; Hong-Qing CHEN ; Xiang-Bing ZENG ; Jun-Jie WANG ; Qing-Guang ZHANG ; Jin-Wen XU ; Shuang LING
China Journal of Chinese Materia Medica 2025;50(14):3990-4002
This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion. The Morris water maze test was performed to evaluate the learning and memory abilities of the rats. Luxol fast blue staining, Nissl staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were utilized to observe the morphology and ultrastructure of the white matter myelin sheaths, axon integrity, the morphology and number of hippocampal neurons, and the loss and activation of glial cells in the white matter. Transcriptome analysis was performed to explore the potential mechanisms of white matter injury induced by CCH. Western blot and quantitative real-time polymerase chain reaction(qRT-PCR) assays were conducted to measure the expression levels of NOD-like receptor protein 3(NLRP3), absent in melanoma 2(AIM2), gasdermin D(GSDMD), cysteinyl aspartate-specific proteinase-1(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), erythropoietin(EPO), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase-1(HO-1) in the white matter of rats. The results showed that compared with the model group, MeBavaC significantly improved the learning and memory abilities of rats with CCH, improved the damage of white matter myelin sheath, maintained axonal integrity, reduced the loss of hippocampal neurons and oligodendrocytes in the white matter, inhibited the activation of microglia and the proliferation of astrocytes in the white matter, and suppressed the NLRP3/AIM2/caspase-1/GSDMD pathway. The expression levels of inflammatory cytokines IL-1β and IL-18 were significantly reduced, while EPO expression and the expression of Nrf2/HO-1 antioxidant pathway were notably elevated. In conclusion, MeBavaC can alleviate cognitive impairment in rats with CCH and suppress neuroinflammation in cerebral white matter. The mechanism of action may involve activation of EPO activity, promotion of endogenous antioxidant pathways, and inhibition of neuroinflammation in the white matter. This study suggests that MeBavaC exhibits antioxidant and anti-neuroinflammatory effects, showing potential application in improving cognitive dysfunction.
Animals
;
Male
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/immunology*
;
Rats
;
Chalcones/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/drug therapy*
;
Heme Oxygenase-1/metabolism*
;
Humans
;
Heme Oxygenase (Decyclizing)/genetics*
7.Ameliorative effects and mechanisms of an integrated endoplasmic reticulum stress inhibitor on lipopolysaccharide-induced cognitive impairment in mice.
Dandan LIU ; Wenjia LIU ; Lihua XIE ; Xiaofan XU ; Xiaolin ZHONG ; Wenyu CAO ; Yang XU ; Ling CHEN
Journal of Central South University(Medical Sciences) 2025;50(6):986-994
OBJECTIVES:
The integrated endoplasmic reticulum stress inhibitor (ISRIB) is a selective inhibitor of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway within endoplasmic reticulum stress (ERS) and can improve spatial and working memory in aged mice. Although ERS and oxidative stress are tightly interconnected, it remains unclear whether ISRIB alleviates cognitive impairment by restoring the balance between ERS and oxidative stress. This study aims to investigate the effects and mechanisms of ISRIB on lipopolysaccharide (LPS)-induced cognitive impairment in mice.
METHODS:
Eight-week-old male ICR mice were randomly divided into 3 groups: Normal saline (NS) group, LPS group, and ISRIB+LPS group. NS and LPS groups received daily intraperitoneal injections of normal saline for 7 days; on day 7, LPS group mice received intraperitoneal LPS (0.83 mg/kg) to establish a cognitive impairment model. ISRIB+LPS group received ISRIB (0.25 mg/kg) intraperitoneally for 7 days, with LPS injected 30 minutes after ISRIB on day 7. Cognitive ability was evaluated by the novel place recognition test (NPRT). Real-time fluorogenic quantitative PCR (RT-qPCR) was used to detect changes in nitric oxide synthase (NOS), superoxide dismutase-1 (SOD-1), and catalase (CAT) gene expression in the hippocampus and prefrontal cortex. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG), were measured in hippocampal and prefrontal cortex tissues.
RESULTS:
Compared with the NS group, mice in LPS group showed a significant reduction in novel place recognition ratio, upregulation of hippocampal NOS-1 and NOS-2 mRNA, downregulation of SOD-1 and CAT mRNA, increased MDA and GSSG, decreased GSH, and reduced GSH/GSSG ratio (all P<0.05). Compared with the LPS group, mice in ISRIB+LPS group exhibited significantly improved novel place recognition, downregulated NOS-1 and NOS-2 mRNA, upregulated SOD-1 and CAT mRNA, decreased MDA and GSSG, increased GSH, and an elevated GSH/GSSG ratio in the hippocampus (all P<0.05). No significant changes were observed in the prefrontal cortex.
CONCLUSIONS
ISRIB improves LPS-induced cognitive impairment in mice by restoring the oxidative/antioxidant balance in the hippocampus.
Animals
;
Lipopolysaccharides
;
Male
;
Mice, Inbred ICR
;
Cognitive Dysfunction/drug therapy*
;
Mice
;
Oxidative Stress/drug effects*
;
Endoplasmic Reticulum Stress/drug effects*
;
Hippocampus/drug effects*
;
Nitric Oxide Synthase Type II/genetics*
;
Guanidines/pharmacology*
;
eIF-2 Kinase/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Superoxide Dismutase/metabolism*
8.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
9.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
10.Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway.
Wenqin YANG ; Wen WEN ; Hao CHEN ; Haijun ZHANG ; Yun LU ; Ping WANG ; Shijun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):77-89
The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear. This study employed an oxygen-glucose deprivation (OGD) cell model using SH-SY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation (2VO). The effects of ZFXN on learning and memory, neuroprotective activity, mitochondrial function, oxidative stress, and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro. Results indicated that ZFXN significantly increased the B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax) ratio, reduced terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL)+ cells, and markedly improved cognition, synaptic plasticity, and neuronal function in the hippocampus and cortex. Furthermore, ZFXN exhibited potent antioxidant activity, evidenced by decreased ROS and malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels. ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential (MMP), Tom20 fluorescence intensity, adenosine triphosphate (ATP) and energy charge (EC) levels, and mitochondrial complex I and III activity, thereby inhibiting mitochondrial damage. Additionally, ZFXN significantly increased SIRT1 activity and elevated SIRT1, nuclear Nrf2, and HO-1 levels. Notably, these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro. In conclusion, ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.
Sirtuin 1/genetics*
;
Animals
;
NF-E2-Related Factor 2/genetics*
;
Cognitive Dysfunction/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Humans
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Heme Oxygenase-1/genetics*
;
Stroke/complications*
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Neuroprotective Agents

Result Analysis
Print
Save
E-mail