1.Research advances in the diagnosis and treatment of lipid storage myopathy
Journal of Apoplexy and Nervous Diseases 2025;42(5):419-426
Lipid storage myopathy (LSM) is a lipid metabolic disorder characterized by excessive lipid droplet accumulation in muscle fibers. Classic multiple Acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric aciduria type Ⅱ, is a disease with various clinical manifestations caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase. In recent years, a large amount of evidence has shown that classic late-onset MADD caused by mutations in the electron transfer flavoprotein dehydrogenase gene is the main cause of LSM. Besides classic MADD, many other diseases with similar changes in blood acylcarnitines and urinary organic acids can also cause LSM, and such diseases are call MADD-like disorders or MADD spectrum. This article reviews the clinical, pathological, biochemical, and molecular features of LSM with various etiologies and the latest advances in treatment, with a focus on the latest findings associated with MADD spectrum.
Riboflavin
2.Research progress on the role and mechanism of ferroptosis in heart diseases.
Yu-Tong CUI ; Xin-Xin ZHU ; Qi ZHANG ; Ai-Juan QU
Acta Physiologica Sinica 2025;77(1):75-84
Cardiovascular disease remains the leading cause of death in China, with its morbidity and mortality continue to rise. Ferroptosis, a unique form of iron-dependent cell death, plays a major role in many heart diseases. The classical mechanisms of ferroptosis include iron metabolism disorder, oxidative antioxidant imbalance and lipid peroxidation. Recent studies have found many additional mechanisms of ferroptosis, such as coenzyme Q10, ferritinophagy, lipid autophagy, mitochondrial metabolism disorder, and the regulation by nuclear factor erythroid 2-related factor 2 (NRF2). This article reviews recent advances in understanding the mechanisms of ferroptosis and its role in heart failure, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, myocardial toxicity of doxorubicin, septic cardiomyopathy, and arrhythmia. Furthermore, we discuss the potential of ferroptosis inhibitors/inducers as therapeutic targets for heart diseases, suggesting that ferroptosis may be an important intervention target of heart diseases.
Ferroptosis/physiology*
;
Humans
;
Heart Diseases/physiopathology*
;
NF-E2-Related Factor 2/physiology*
;
Animals
;
Myocardial Reperfusion Injury/physiopathology*
;
Lipid Peroxidation
;
Heart Failure/physiopathology*
;
Iron/metabolism*
;
Diabetic Cardiomyopathies/physiopathology*
;
Ubiquinone/analogs & derivatives*
3.NAD+ metabolism in cardiovascular diseases.
Zhao-Zhi WEN ; Yi-Hang YANG ; Dong LIU ; Chong-Xu SHI
Acta Physiologica Sinica 2025;77(2):345-360
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in multiple cellular energy metabolism, such as cell signaling, DNA repair, protein modifications, and so on. Evidence suggests that NAD+ levels decline with age, obesity, and hypertension, which are all significant CVD risk factors. In addition, the therapeutic elevation of NAD+ levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances antioxidation and metabolism in vascular cells of humans with vascular disorders. In preclinical animal models, NAD+ boosting also extends the health span, prevents metabolic syndrome, and decreases blood pressure. Moreover, NAD+ storage by genetic, pharmacological, or natural dietary NAD+-increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models and humans. Here, we discuss NAD+-related mechanisms pivotal for vascular health and summarize recent research on NAD+ and its association with vascular health and disease, including hypertension, atherosclerosis, and coronary artery disease. This review also assesses various NAD+ precursors for their clinical efficacy and the efficiency of NAD+ elevation in the prevention or treatment of major CVDs, potentially guiding new therapeutic strategies.
Humans
;
Cardiovascular Diseases/physiopathology*
;
NAD/metabolism*
;
Animals
;
Hypertension/metabolism*
4.Inhibition of the mitochondrial metabolic enzyme OGDC affects erythroid development.
Bin HU ; Mao-Hua LI ; Han GONG ; Lu HAN ; Jing LIU
Acta Physiologica Sinica 2025;77(3):395-407
Mitochondrial metabolism is crucial for providing energy and heme precursors during erythroid development. Oxoglutarate dehydrogenase complex (OGDC) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, and its level gradually increases during erythroid development, indicating its significant role in erythroid development. The aim of the present study was to explore the role and mechanism of OGDC in erythroid development. In this study, we treated erythroid progenitor cells with CPI-613, a novel lipoic acid analog that competitively inhibits OGDC. The results showed that CPI-613 inhibited erythropoietin (EPO)-induced differentiation and enucleation of human CD34+ hematopoietic stem cells into erythroid cells, suppressed cell proliferation, and induced apoptosis. The results of in vivo experiments showed that CPI-613 also hindered the recovery of mice from acute hemolytic anemia. Further mechanism research results showed that CPI-613 increased reactive oxygen species (ROS) in erythroid progenitor cells, inhibited mitochondrial respiration, caused mitochondrial damage, and suppressed heme synthesis, thereby inhibiting erythroid differentiation. Clinical research results showed that oxoglutarate dehydrogenase (OGDH) protein expression levels were up-regulated in bone marrow cells of polycythemia vera (PV) patients. Treatment with CPI-613 significantly inhibited the excessive proliferation and differentiation of erythroid progenitor cells of the PV patients. These findings demonstrates the critical role of OGDC in normal erythroid development, suggesting that inhibiting its activity could be a novel therapeutic strategy for treating PV.
Animals
;
Humans
;
Mitochondria/metabolism*
;
Mice
;
Ketoglutarate Dehydrogenase Complex/physiology*
;
Cell Differentiation/drug effects*
;
Cells, Cultured
;
Erythropoiesis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Proliferation/drug effects*
;
Erythroid Precursor Cells/cytology*
;
Apoptosis/drug effects*
;
Thioctic Acid/pharmacology*
;
Caprylates
;
Sulfides
5.Controllability and predictability of riboflavin-ultraviolet A collagen cross-linking: advances in experimental techniques and theoretical research.
Xiaona LIU ; Xiaona LI ; Weiyi CHEN
Journal of Biomedical Engineering 2025;42(1):212-218
Riboflavin-ultraviolet A (UVA) collagen cross-linking has not only achieved good clinical efficacy in the treatment of corneal diseases such as dilatation keratopathy, bullae keratopathy, infectious keratopathy, and in the combined treatment of corneal refractive surgeries, but also its efficacy and safety in scleral collagen cross-linking have been initially confirmed. To better promote the application of cross-linking in the clinical treatment of corneal and scleral diseases, exploring controllability and predictability of the surgical efficacy are both important for evaluating the surgical efficacy and personalized precision treatment. In this paper, the progress on the cross-linking depth of riboflavin-UVA collagen cross-linking, and its relationship with the cross-linking effect will be reviewed. It will provide the reference for further application of this procedure in ophthalmology clinics.
Riboflavin/pharmacology*
;
Humans
;
Collagen/radiation effects*
;
Ultraviolet Rays
;
Cross-Linking Reagents
;
Corneal Diseases/drug therapy*
;
Photosensitizing Agents/therapeutic use*
6.Neuroprotective effects of idebenone combined with borneol via the dopamine signaling pathway in a transgenic zebrafish model of Parkinson's disease.
Qifei WANG ; Yayun ZHONG ; Yanan YANG ; Kechun LIU ; Li LIU ; Yun ZHANG
Journal of Biomedical Engineering 2025;42(5):1046-1053
The aim of this study is to investigate the protective effect of idebenone (IDE) combined with borneol (BO) against Parkinson's disease (PD). In this study, wild-type AB zebrafish and transgenic Tg ( vmat2: GFP) zebrafish with green fluorescence labeled dopamine neurons were used to establish the PD model with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Following drug treatment, the behavioral performance and dopamine neuron morphology of zebrafish were evaluated, and regulation of dopamine signaling pathway-related genes was determined using RT-qPCR. The results showed that IDE combined with BO improved the behavioral disorders of zebrafish such as bradykinesia and shortening movement distance, also effectively reversed the damage of MPTP-induced dopaminergic neurons. At the same time, the expression of dopamine synthesis and transportation-related genes was up-regulated, and the normal function of the signal transduction pathway was restored. The combination showed a better therapeutic effect compared to the IDE monotherapy group. This study reveals the protective mechanism of IDE combined with BO on the central nervous system for the first time, which provides an important experimental basis and theoretical reference for clinical combination strategy in PD treatment.
Animals
;
Zebrafish
;
Signal Transduction/drug effects*
;
Animals, Genetically Modified
;
Dopamine/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Disease Models, Animal
;
Camphanes/pharmacology*
;
Ubiquinone/pharmacology*
;
Parkinson Disease/drug therapy*
;
Dopaminergic Neurons/metabolism*
7.Mechanism analysis of ω-3 polyunsaturated fatty acids in alleviating oxidative stress and promoting osteogenic differentiation of MC3T3-E1 cells through activating Nrf2/NQO1 pathway.
Jiahui HUANG ; Long CHEN ; Chen XU ; Haojie YU ; Shishuai ZHOU ; Jianzhong GUAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(11):1459-1467
OBJECTIVE:
To explore the mechanism by which ω-3 polyunsaturated fatty acids (hereinafter referred to as "ω-3") exert antioxidant stress protection and promote osteogenic differentiation in MC3T3-E1 cells, and to reveal the relationship between ω-3 and the key antioxidant stress pathway involving nuclear factor E2-related factor 2 (Nrf2) and NAD (P) H quinone oxidoreductase 1 (NQO1) in MC3T3-E1 cells.
METHODS:
The optimal concentration of H 2O 2 (used to establish the oxidative stress model of MC3T3-E1 cells in vitro) and the optimal intervention concentrations of ω-3 were screened by cell counting kit 8. MC3T3-E1 cells were divided into blank control group, oxidative stress group (H 2O 2), low-dose ω-3 group (H 2O 2+low-dose ω-3), and high-dose ω-3 group (H 2O 2+high-dose ω-3). After osteoblastic differentiation for 7 or 14 days, the intracellular reactive oxygen species (ROS) level was measured by fluorescence staining and flow cytometry, and the mitochondrial morphological changes were observed by biological transmission electron microscope; the expression levels of Nrf2, NQO1, heme oxygenase 1 (HO-1), Mitofusin 1 (Mfn1), and Mfn2 were detected by Western blot to evaluate the cells' antioxidant stress capacity; the expression levels of Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) were detected by immunofluorescence staining and Western blot; osteogenic potential of MC3T3-E1 cells was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining.
RESULTS:
Compared with the oxidative stress group, the content of ROS in the low and high dose ω-3 groups significantly decreased, and the protein expressions of Nrf2, NQO1, and HO-1 significantly increased ( P<0.05). At the same time, the mitochondrial morphology of MC3T3-E1 cells improved, and the expressions of mitochondrial morphology-related proteins Mfn1 and Mfn2 significantly increased ( P<0.05). ALP staining and alizarin red staining showed that the low-dose and high-dose ω-3 groups showed stronger osteogenic ability, and the expressions of osteogenesis-related proteins RUNX2 and OCN significantly increased ( P<0.05). And the above results showed a dose-dependence in the two ω-3 treatment groups ( P<0.05).
CONCLUSION
ω-3 can enhance the antioxidant capacity of MC3T3-E1 cells under oxidative stress conditions and upregulate their osteogenic activity, possibly through the Nrf2/NQO1 signaling pathway.
Oxidative Stress/drug effects*
;
NF-E2-Related Factor 2/metabolism*
;
NAD(P)H Dehydrogenase (Quinone)/metabolism*
;
Animals
;
Mice
;
Osteogenesis/drug effects*
;
Cell Differentiation/drug effects*
;
Fatty Acids, Omega-3/pharmacology*
;
Signal Transduction/drug effects*
;
Osteoblasts/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Line
;
Hydrogen Peroxide/pharmacology*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Antioxidants/pharmacology*
;
Heme Oxygenase-1/metabolism*
8.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
9.Enzymatic MBH reaction catalyzed by an artificial enzyme designed with the introduction of an unnatural tertiary amine cofactor.
Ya WEI ; Chongwen CHEN ; Yingjia TONG ; Zhi ZHOU
Chinese Journal of Biotechnology 2025;41(1):376-384
As the chip of synthetic biology, enzymes play a vital role in the bio-manufacturing industry. The development of diverse functional enzymes can provide a rich toolbox for the development of synthetic biology. This article reports the construction of an artificial enzyme with the introduction of a non-natural cofactor. By introducing the 4-dimethylaminopyridine (DMAP) cofactor into the optimal protein skeleton via covalent bonds based on a click-chemistry strategy, we successfully constructed a novel artificial enzyme with the DMAP cofactor as the catalytic center. The artificial enzyme successfully catalyzed an unnatural asymmetric Morita-Baylis- Hillman (MBH) reaction between cycloketenone and p-nitrobenzaldehyde, with a conversion rate of 90% and enantioselectivity (e.e.) of 38%. This study not only provides an effective strategy for the design of new artificial enzymes but also establishes a theoretical basis for the development of unnatural biocatalytic MBH reactions.
Biocatalysis
;
4-Aminopyridine/chemistry*
;
Enzymes/metabolism*
;
Coenzymes/chemistry*
;
Benzaldehydes/chemistry*
;
Protein Engineering/methods*
;
Click Chemistry
10.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases

Result Analysis
Print
Save
E-mail